Chapter 3:

- Propositions, booleans, logical equivalence. §3.(1–4) (Today)
- Conditional propositions, conditional expressions. §3.(5–7) (Wednesday)
- Arguments. §3.(8 & 9) (Friday)
- Predicates and quantification. §3.(10–13) (Next week Monday)
- Quantified arguments. §3.14 (Next week Wednesday)

Today:

- Highlight main points of §3.(1&2): Propositions, forms, etc
- Demo SML features from §3.3: Boolean values
- Work through §3.4: Logical equivalences (Game 1)
Semester roadmap:

Ch 1 & 2: Raw materials
Ch 3: Formal logic
— Test 1, Sept 27 —
Ch 4: Proofs
Ch 5: Relations
— Test 2, Oct 29 —
Ch 6: Self reference
Ch 7: Functions
— Test 3, Dec 1 —

Chapter 3 roadmap:

Today: Logical equivalences (Game 1)
Wednesday: Conditionals (SML)
Friday: Arguments (Game 2)
Next week Monday: Predicates and quantification (SML)
Next week Wednesday: Quantified arguments (Game 3)
Next week Friday: Review for test
A **proposition** is a sentence that is true or false, but not both.

It is snowing and it is not Thursday.

A **propositional form** is like a proposition but with content replaced by variables.

* p and not q

\[p \land \sim q \]
\(\mathbb{Z} = \{ \ldots -3, -2, -1, 0, 1, 2, 3 \ldots \} \)

\(\mathbb{B} = \{ T, F \} \)

+ \quad - \quad \times \quad \div

<table>
<thead>
<tr>
<th>\times</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

\begin{align*}
\land & | T & F \\
T & | T & T & T \\
F & | F & F & F
\end{align*}
<table>
<thead>
<tr>
<th>p</th>
<th>$\sim p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \land q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>$p \lor q$</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>p</td>
<td>q</td>
<td>$p \land q$</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Evaluate (to T or F) this logical expression:

$$(T \land (\sim F \lor F)) \land (T \land T)$$
Evaluate (to T or F) this logical expression:

$$(T \lor F) \land \sim (F \land T)$$
Evaluate (to T or F) this logical expression:

$$(F \lor F \lor T) \land (\sim T \land F)$$
\[p \quad q \quad \sim p \quad \sim q \quad p \land q \quad \sim (p \land q) \quad \sim p \lor \sim q \]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(\sim p)</th>
<th>(\sim q)</th>
<th>(p \land q)</th>
<th>(\sim (p \land q))</th>
<th>(\sim p \lor \sim q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
<td>(F)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>Commutative laws:</td>
<td>(p \land q \equiv q \land p)</td>
<td>(p \lor q \equiv q \lor p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associative laws:</td>
<td>((p \land q) \land r \equiv p \land (q \land r))</td>
<td>((p \lor q) \lor r \equiv p \lor (q \lor r))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distributive laws:</td>
<td>(p \land (q \lor r) \equiv (p \land q) \lor (p \land r))</td>
<td>(p \lor (q \land r) \equiv (p \lor q) \land (p \lor r))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorption laws:</td>
<td>(p \land (p \lor q) \equiv p)</td>
<td>(p \lor (p \land q) \equiv p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idempotent laws:</td>
<td>(p \land p \equiv p)</td>
<td>(p \lor p \equiv p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double negative law:</td>
<td>(\sim \sim p \equiv p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DeMorgan’s laws:</td>
<td>(\sim (p \land q) \equiv \sim p \lor \sim q)</td>
<td>(\sim (p \lor q) \equiv \sim p \land \sim q)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negation laws:</td>
<td>(p \lor \sim p \equiv T)</td>
<td>(p \land \sim p \equiv F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Universal bound laws:</td>
<td>(p \lor T \equiv T)</td>
<td>(p \land F \equiv F)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identity laws:</td>
<td>(p \land T \equiv p)</td>
<td>(p \lor F \equiv p)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tautology and contradiction laws:</td>
<td>(\sim T \equiv F)</td>
<td>(\sim F \equiv T)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Remember from high school algebra that there are “simplify” problems and “solve” problems.

■ Simplify \(3x(2 + 3x)^2 + 1\).

\[
3x(2 + 3x)^2 + 1 \\
= 3x(4 + 12x + 9x^2) + 1 \\
= 12x + 36x^2 + 27x^3 + 1 \\
= 27x^3 + 36x^2 + 12x + 1
\]

■ Solve \(12x = 57 - 7x\) for \(x\).

\[
12x = 57 - 7x \\
19x = 57 \\
x = 3
\]
Suppose we were to show that \(\sim (\sim p \land q) \lor (p \lor \sim p) \equiv p \lor \sim q \).

Do this:

\[
\begin{align*}
\sim (\sim p \land q) \lor (p \land \sim p) \\
\equiv \sim (\sim p \land q) \lor F \\
\equiv \sim (\sim p \land q) \\
\equiv p \lor \sim q
\end{align*}
\]

by negation law

by identity law

by De Morgan’s

Don’t do this:

\[
\begin{align*}
\sim (\sim p \land q) \lor (p \land \sim p) & \equiv p \lor \sim q \\
\sim (\sim p \land q) \lor F & \equiv p \lor \sim q \\
\sim (\sim p \land q) & \equiv p \lor \sim q \\
p \lor \sim q & \equiv p \lor \sim q
\end{align*}
\]

by negation law

by identity law

by De Morgan’s
Semester roadmap:

Ch 1 & 2: Raw materials
Ch 3: Formal logic
—Test 1, Sept 27 —
Ch 4: Proofs
Ch 5: Relations
— Test 2, Oct 29 —
Ch 6: Self reference
Ch 7: Functions
— Test 3, Dec 1 —

Chapter 3 roadmap:

Today: Logical equivalences (Game 1)
Wednesday: Conditionals (SML)
Friday: Arguments (Game 2)
Next week Monday: Predicates and quantification (SML)
Next week Wednesday: Quantified arguments (Game 3)
Next week Friday: Review for test
For next time:

Pg 102: 3.3.(5 & 6)
Pg 105: 3.4.(2, 4, 8-12)

Read 3.(5-7)
Take quiz