Chapter 6 roadmap:
- Recursive definitions and types (Monday)
- Structural induction (Today)
- Mathematical induction (Friday)
- Loop invariant proofs (next week Monday and Wednesday)

Last time we saw
- A recursive definition of whole numbers
- A recursive definition of trees, particularly full binary trees; a full binary tree is either
 - a leaf, or
 - an internal node together with two children which are full binary trees.

Today we see
- Self-referential proofs
While building bigger trees from smaller trees, the number of nodes is (and remains) one more than the number of links. (Invariant)

Theorem 6.1 For any full binary tree T, $\text{nodes}(T) = \text{links}(T) + 1$.

Let \mathcal{T} be the set of full binary trees. Then, we’re saying

$$\forall T \in \mathcal{T}, \text{nodes}(T) = \text{links}(T) + 1$$
Theorem 6.1 For any full binary tree T, $\text{nodes}(T) = \text{links}(T) + 1$.

Proof. Suppose $T \in \mathcal{T}$. [What is a tree? the definition says it’s either a leaf or an internal with two subtrees. We can use division into cases.]

Case 1. Suppose T is a leaf. Then, by how nodes and links are defined, $\text{nodes}(T) = 1$ and $\text{links}(T) = 0$. Hence $\text{nodes}(T) = \text{links}(T) + 1$.

Case 2. Suppose T is an internal node with links to subtrees T_1 and T_2. Moreover, by how nodes and links are defined, $\text{links}(T) = \text{links}(T_1) + \text{links}(T_2) + 2$. Then,

$$
\text{nodes}(T) = 1 + \text{nodes}(T_1) + \text{nodes}(T_2) \quad \text{by the definition of nodes}
$$
$$
= 1 + \text{links}(T_1) + 1 + \text{links}(T_2) + 1 \quad \text{by Theorem 6.1}
$$
$$
= \text{links}(T_1) + \text{links}(T_2) + 2 + 1 \quad \text{by algebra}
$$
$$
= \text{links}(T) + 1 \quad \text{by substitution}
$$

Either way, $\text{nodes}(T) = \text{links}(T) + 1$. □
Theorem 6.1 For any full binary tree T, $\text{nodes}(T) = \text{links}(T) + 1$.

Proof. Suppose $T \in \mathcal{T}$.

Base case. Suppose T is a leaf. Then, by how nodes and links are defined, $\text{nodes}(T) = 1$ and $\text{links}(T) = 0$. Hence $\text{nodes}(T) = \text{links}(T) + 1$.

Inductive case Suppose T is an internal node with links to subtrees T_1 and T_2 such that $\text{nodes}(T_1) = \text{links}(T_1) + 1$ and $\text{nodes}(T_2) = \text{links}(T_2) + 1$. Moreover, by how nodes and links are defined, $\text{links}(T) = \text{links}(T_1) + \text{links}(T_2) + 2$. Then,

$$
\text{nodes}(T) = 1 + \text{nodes}(T_1) + \text{nodes}(T_2) \quad \text{by the definition of nodes}
$$

$$
= 1 + \text{links}(T_1) + 1 + \text{links}(T_2) + 1 \quad \text{by the inductive hypothesis}
$$

$$
= \text{links}(T_1) + \text{links}(T_2) + 2 + 1 \quad \text{by algebra}
$$

$$
= \text{links}(T) + 1 \quad \text{by substitution}
$$

Either way, $\text{nodes}(T) = \text{links}(T) + 1$. \square
Let X be a recursively defined set, and let $\{Y, Z\}$ be a partition of X, where Y is defined by a simple set of elements $Y = \{y_1, y_2, \ldots\}$ and Z is defined by a recursive rule.

Examples:

- X is the set of lists, $Y = \{[]\}$, and $Z = \{a :: \text{rest} \mid \text{rest} \in X\}$
- $X = \mathbb{W}$, $Y = \{0\}$, and $Z = \{\text{succ}(n) \mid n \in \mathbb{W}\}$
- $X = \mathcal{T}$, Y is the set of leaves, and Z is the set of internals with children $T_1, T_2 \in \mathcal{T}$.
Let \(X \) be a recursively defined set, and let \(\{Y, Z\} \) be a partition of \(X \), where \(Y \) is defined by a simple set of elements \(Y = \{y_1, y_2, \ldots\} \) and \(Z \) is defined by a recursive rule.

To prove something in the form of \(\forall x \in X, I(x) \), do this:

Base case: Suppose \(x \in Y \).

\[
I(x)
\]

Inductive case: Suppose \(x \in Z \). [Using \(x \) and the definition of \(Z \), find components \(a, b, \ldots \in X \).]

Suppose \(I(a), I(b), \ldots \) [The inductive hypothesis]

Use the inductive hypothesis

\[
I(x) \square
\]
For next time:

See Schoology for homework problems, based on problems from Section 6.4.

Skim 6.(5 & 6)

Take quiz