Chapter 5 roadmap:

- Introduction to relations (Monday before break)
- Properties of relations (Wednesday and Friday before break)
- Transitive closure (Today)
- Partial order relations (Wednesday)
- Review for Test 2 (Friday)
- Test 2 on Chapters 4 & 5 (next week Monday)

Today:

- Review of relation properties
- An arithmetic on relations
- Computing whether a function is transitive
- Transitive closure
<table>
<thead>
<tr>
<th>Relation Type</th>
<th>Symbol</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>A relation from one set to another</td>
<td>R</td>
<td>set of pairs subset of $X \times Y$</td>
<td>isEnrolledIn, isTaughtBy</td>
</tr>
<tr>
<td>A relation on a set</td>
<td>R</td>
<td>set of pairs subset of $X \times X$</td>
<td>eats, divides</td>
</tr>
<tr>
<td>The image of an element under a relation</td>
<td>$\mathcal{I}_R(a)$</td>
<td>set of things that a is related to</td>
<td>classes Bob is enrolled in, numbers that 4 divides</td>
</tr>
<tr>
<td>The image of a set under a relation</td>
<td>$\mathcal{I}_R(A)$</td>
<td>set of things that things in A are related to</td>
<td>classes Bob, Larry, or Alice are taking, numbers that 2, 3, or 5 divide</td>
</tr>
<tr>
<td>The inverse of a relation</td>
<td>R^{-1}</td>
<td>the arrows/pairs of R reversed</td>
<td>hasOnRoster, teaches, isEatenBy, isDivisibleBy</td>
</tr>
<tr>
<td>The composition of two relations</td>
<td>$S \circ R$</td>
<td>two hops combined to one hop</td>
<td>hasAsProfessor, eatsSomethingThatEats</td>
</tr>
<tr>
<td>The identity relation on a set</td>
<td>i_X</td>
<td>everything is related only to itself</td>
<td>$\mathcal{I}_R(a) = {b \in Y \mid (a, b) \in R}$</td>
</tr>
<tr>
<td>$\mathcal{I}_R(a) = {b \in Y \mid (a, b) \in R}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathcal{I}_R(A) = {b \in Y \mid \exists a \in A \mid (a, b) \in R}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R^{-1} = {(b, a) \in Y \times X \mid (a, b) \in R}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S \circ R = {(a, c) \in X \times Z \mid \exists b \in Y \mid (a, b) \in R \land (b, c) \in S}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$i_X = {(x, x) \mid x \in X}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reflexivity

Informal
Everything is related to itself

Formal
\[\forall x \in X, (x, x) \in R \]

Visual

Examples
\[\subseteq, \leq, \geq, \equiv, i, \text{isAquaintedWith}, \text{waterVerticallyAligned} \]

Symmetry

All pairs are mutual

Formal
\[\forall x, y \in X, (x, y) \in R \rightarrow (y, x) \in R \]

Visual

Examples
\[\equiv, \text{isOppositeOf}, \text{isOnSameRiver}, \text{isAquaintedWith} \]

Transitivity

Anything reachable by two hops is reachable by one hop

Formal
\[\forall x, y, z \in X, (x, y), (y, z) \in R \rightarrow (x, z) \in R \]

Visual

Examples
\[<, \leq, >, \geq, \subseteq, \text{isTallerThan}, \text{isAncestorOf}, \text{isWestOf} \]
<table>
<thead>
<tr>
<th>Operators</th>
<th>$x + y$</th>
<th>$p \lor q$</th>
<th>$A \cup B$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$-x$</td>
<td>$\sim p$</td>
<td>\overline{A}</td>
</tr>
<tr>
<td>Distribution</td>
<td>$x \cdot (y + z)$</td>
<td>$p \land (q \lor r)$</td>
<td>$A \cap (B \cup C)$</td>
</tr>
<tr>
<td></td>
<td>$= x \cdot y + x \cdot z$</td>
<td>$\equiv (p \land q) \lor (p \land r)$</td>
<td>$= (A \cap B) \cup (A \cap C)$</td>
</tr>
<tr>
<td>Identity</td>
<td>$x + 0 = x$</td>
<td>$p \lor T \equiv p$</td>
<td>$A \cup \emptyset = A$</td>
</tr>
<tr>
<td></td>
<td>$x \cdot 1 = x$</td>
<td>$p \land F \equiv p$</td>
<td>$A \cap U = A$</td>
</tr>
</tbody>
</table>
\[S \circ R \]

\[R^{-1} \]

\[i_X \circ R = R \]

\[R^2 = R \circ R \]
R is one less than eats is parent of

R^2 is two less than eats something that eats is grandparent of

R^3 is three less than eats something that eats something that eats is great grandparent of

??? $<$ gets nutrients from is ancestor of
Definition of transitivity

Short form: \(\forall (x, y), (y, z) \in R, (x, z) \in R \)

Transform this to:

\[
\forall (x, y) \in R, \ \forall (w, z) \in R, \text{ if } y = w \text{ then } (x, z) \in R
\]
Definition of transitivity

Short form: $\forall (x, y), (y, z) \in R, (x, y) \in R$

Transform this to:

$\forall (x, y) \in R, \forall (w, z) \in R, \text{ if } y = w \text{ then } (x, z) \in R$
Definition of transitivity

Short form: $\forall (x, y), (y, z) \in R, (x, y) \in R$

Transform this to:

$\forall (x, y) \in R, \forall (w, z) \in R, \textrm{ if } y = w \textrm{ then } (x, z) \in R$
Definition of transitivity

Short form: \(\forall (x, y), (y, z) \in R, (x, y) \in R \)

Transform this to:

\[\forall (x, y) \in R, \quad \forall (w, z) \in R, \quad \text{if } y = w \text{ then } (x, z) \in R \]
Definition of transitivity

Short form: $\forall (x, y), (y, z) \in R, (x, y) \in R$

Transform this to:

$\forall (x, y) \in R, \forall (w, z) \in R, \text{ if } y = w \text{ then } (x, z) \in R$
\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}

\{\textcolor{red}{(1, 2)}, \textcolor{blue}{(2, 3)}, (5, 2), \textcolor{red}{(1, 5)}, \textcolor{blue}{(2, 5)}, (1, 3)\}

\{\textcolor{red}{(1, 2)}, \textcolor{blue}{(2, 3)}, (5, 2), (1, 5), \textcolor{blue}{(2, 5)}, (1, 3)\}

\{\textcolor{red}{(1, 2)}, \textcolor{blue}{(2, 3)}, (5, 2), (1, 5), (2, 5), (1, 3)\}
Computing transitivity is a $\forall\forall\exists$ problem

Our strategy is, for each pair (x, y), walk through the whole (original) list. If the list

1. is empty, then true (vacuously)
2. begins with (y, z) (that is, begins with (w, z) where $y = w$), then search the whole (original) list for (x, z).
 2.1 if found, keep searching
 2.2 if not found, then false
3. begins with (w, z) for $w \neq y$, skip it and keep searching
<table>
<thead>
<tr>
<th>Domain</th>
<th>First relation</th>
<th>Second relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rivers</td>
<td>flows into</td>
<td>is tributary to</td>
</tr>
<tr>
<td></td>
<td>The Platte flows into the Missouri, and the Missouri flows into the Mississippi.</td>
<td>The Platte is a tributary to the Missouri; both the Platte and the Missouri are tributaries to the Mississippi.</td>
</tr>
<tr>
<td>People</td>
<td>is parent of</td>
<td>is ancestor of</td>
</tr>
<tr>
<td></td>
<td>Bill is Jane’s parent; Jane is Leroy’s parent</td>
<td>Bill is Jane’s ancestor; Leroy has both Jane and Bill as ancestors.</td>
</tr>
<tr>
<td>Domain</td>
<td>First relation</td>
<td>Second relation</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Animals</td>
<td>eats</td>
<td>derives nutrients from</td>
</tr>
<tr>
<td></td>
<td>Rabbit eats clover; coyote eats rabbit.</td>
<td>Coyote derives nutrients from rabbit; rabbit derives nutrients from clover; both coyote and rabbit ultimately derive nutrients from clover.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>\mathbb{Z}</th>
<th>is one less than</th>
<th>$<$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 is one less than 3; 3 is one less than 4</td>
<td>$2 < 3; \ 3 < 4; \ 2 < 4.$</td>
<td></td>
</tr>
</tbody>
</table>
N Platte → S Platte → Platte → Canadian → Arkansas → Missouri → Mississippi → Allegheny → Monogahela → Tennessee → Ohio
If R is a relation on X, then R^T is the **transitive closure** of R if

- R^T is transitive
- $R \subseteq R^T$
- If S is a transitive relation such that $R \subseteq S$, then $R^T \subseteq S$
Theorem 5.12 The transitive closure of a relation R is unique.

Proof. Suppose S and T are relations fulfilling the requirements for being transitive closures of R. By items 1 and 2, S is transitive and $R \subseteq S$, so by item 3, $T \subseteq S$. By items 1 and 2, T is transitive and $R \subseteq T$, so by item 3, $S \subseteq T$. Therefore $S = T$ by the definition of set equality. □
Other closures:

Ex 5.7.2 $R \cup i_A$ is the reflexive closure of R

Ex 5.7.3. $R \cup R^{-1}$ is the symmetric closure of R. (HW)
Ex 5.7.2 $R \cup i_A$ is the reflexive closure of R

Proof. Suppose R is a relation on A.

[R $\cup i_A$ is reflexive:] Suppose $a \in A$. $(a, a) \in i_A$ by definition of identity relation. $(a, a) \in R \cup i_A$ by definition of union. Hence $R \cup i_A$ is reflexive by definition.

[R $\subseteq R \cup i_A$:] Suppose $(a, b) \in R$. Then $(a, b) \in R \cup i_A$ by definition of union. Hence $R \subseteq R \cup i_A$. (Alternately, we could have cited Exercise 4.2.1.)

[R $\cup i_A$ is the smallest such relation:] Suppose S is a reflexive relation such that $R \subseteq S$. Suppose further $(a, b) \in R \cup i_A$. By definition of union, $(a, b) \in R$ or $(a, b) \in i_A$.

Case 1: Suppose $(a, b) \in R$. Then $(a, b) \in S$ by definition of subset (since we supposed $R \subseteq S$).

Case 2: Suppose $(a, b) \in i_A$. Then, by definition of identity relation, $a = b$. $(a, a) \in S$ by definition of reflexive (since we suppose S is reflexive). $(a, b) \in S$ by substitution.

Either way, $(a, b) \in S$ and hence $R \cup i_A \subseteq S$ by definition of subset. Therefore, $R \cup i_A$ is the reflexive closure of R. □
Theorem 5.13 If R is a relation on a set A, then

$$R^\infty = \bigcup_{i=1}^{\infty} R^i = \{(x, y) \mid \exists \ i \in \mathbb{N} \text{ such that } (x, y) \in R^i\}$$

is the transitive closure of R.

Proof. Suppose R is a relation on a set A.
Suppose $a, b, c \in A$, $(a, b), (b, c) \in R^\infty$. By the definition of R^∞, there exist $i, j \in \mathbb{N}$ such that $(a, b) \in R^i$ and $(b, c) \in R^j$. By the definition of relation composition and Exercise 5.7.4, $(a, c) \in R^j \circ R^i = R^{i+j}$. $R^{i+j} \subseteq R^\infty$ by the definition of R^∞. By the definition of subset, $(a, c) \in R^\infty$. Hence, R^∞ is transitive by definition.
Suppose $a, b \in A$ and $(a, b) \in R$. By the definition of R^∞ (taking $i = 1$), $(a, b) \in R^\infty$, and so $R \subseteq R^\infty$, by definition of subset.
Suppose S is a transitive relation on A and $R \subseteq S$. Further suppose $(a, b) \in R^\infty$. Then, by definition of R^∞, there exists $i \in \mathbb{N}$ such that $(a, b) \in R^i$. By Lemma 5.14, $(a, b) \in S$. Hence $R^\infty \subseteq S$ by definition of subset.
Therefore, R^∞ is the transitive closure of R. □
For next time:

Pg 217: 5.6.(1 & 3)
Pg 222: 5.7.(3,4,5)

For Exercise 5.7.4, it should say \((S \circ R) \circ Q = S \circ (R \circ Q)\) instead of \((R \circ S) \circ Q = R \circ (S \circ Q)\).

Read 5.(8 & 9)