Contents

CATALOG DESCRIPTION. Formal and experimental approaches to verifying algorithms’ correctness and analyzing their efficiency. Abstract data types and their implementations. Efficient implementations of maps using balanced binary search trees and hash tables. Graph algorithms. Dynamic programming. Prerequisites: CSCI 243 and CSCI 245.

TEXTBOOK.

PURPOSE OF THE COURSE. This course is a central part of the computer science major. This is the place where students solidify their understanding of algorithmic problem-solving, data abstraction, and the trade-offs of data structuring strategies. Moreover, students add knowledge of crucial algorithmic techniques and data structures to their toolkit. Specifically, there are six big ideas. The first three are pursued throughout the course, the last three refer to specific units.

1. The correctness of an algorithm can be verified formally using loop invariants and other proof techniques and empirically using unit tests.
2. The efficiency of an algorithm can be measured formally using algorithmic analysis, big-oh categories, etc, and empirically by running experiments.
3. Abstract data types, especially list, stack, queue, set, bag, and map, are specified by how they are used; data structures, such as arrays, linked lists, binary trees, and hash tables, are implementation strategies, each with trade-offs.
4. Searching in an unordered data structure such as a map can be done in logarithmic time using a balanced binary search tree.
5. Searching in an unordered data structure can be done in constant time using a hash table.
6. Problems with overlapping subproblems and optimal substructure can be solved efficiently using dynamic programming.
COURSE OUTLINE. (For a schedule, see the course website.)

I. Prolegomena

Studying data structures and algorithms requires clear expression of the basic principles. When studying algorithms, we have two dimensions. For a given algorithm, we want to determine whether it is correct or not and how efficient it is; both of these things can be studied both formally and empirically. For that end we consider formal techniques for reasoning about what an algorithm does and categorizing its running time. We also identify basic algorithms that are used as elements in more complicated algorithms, which builds our intuition for determining an algorithm’s complexity.

Moreover, we need a clear distinction between abstract data types (ADTs), which specify how a container or other composite type presents itself to the rest of the system, and data structures, which are strategies for implementing ADTs. We define a set of standard (“canonical”) ADTs, as well as identify the basic data structures that are used as elements in more complicated data structures.

A. Algorithms and correctness
B. Algorithms and efficiency
C. Abstract data types
D. Data structures

II. Case studies

Before hitting the meat of the course, we explore a few extended examples. Each of these serves to reinforce and illuminate the principles laid out in the previous unit. Moreover, each is used as elements in certain later topics.

A. Linear sorting
B. Disjoint sets and union/find
C. Heaps and priority queues
D. Bit vectors

III. Graphs

The graph, as a mathematical abstraction, is one of the most important tools for representing the structure of information and relationships within information, used in one form or another by many fields. Accordingly, efficient ways to store and process graphs are a crucial piece of the study of data structures and algorithms.

This exploration of standard graph algorithms is both an exercise in applying the principles of the course and a primer in algorithmic elements whose variations can be applied to many specialized applications.

A. Graph concepts and implementation
B. Basic traversal algorithms: Depth-first and breath-first
C. Minimum spanning trees
D. Shortest paths

IV. Trees

In this chapter we embark on a task that stays with us for the rest of the course: Developing efficient data structures for implementing unordered collections, such as the map ADT. The naïve implementations have linear-time operations. This chapter considers one family of solutions: the binary search tree abstraction and various tree data structures that afford map implementations with logarithmic-time operations.

Specifically we consider several strategies for self-balancing binary search trees and compare their performance and other practical aspects.

A. Binary search trees
B. Balanced binary search trees
 1. AVL trees
 2. Red-black trees
3. Left-leaning red-black trees
4. 2-3 trees
5. B-trees

V. Dynamic programming

Dynamic programming is a technique that uses tables to store intermediate results of recursive algorithms for certain optimization problems with overlapping subproblems. Our exploration is organized around an introduction of several problems suited to dynamic programming solutions, the explanation of the principles of dynamic programming, the application of those principles to the given problems, and, finally, the working out of a larger dynamic programming solution to a more complicated problem. That more complicated problem is a continuation of our quest for improved implementation of the map ADT: constructing a binary search tree not to achieve balance but optimality based on the look-up probabilities of the keys.

A. Three problems
B. Principles of dynamic programming
C. Three dynamic programming solutions
D. Optimal binary search trees

VI. Hashing

Having achieved logarithmic-time operations for a map using a binary search tree, we pursue the quest further with hash tables, a family of data structures that support constant-time map operations. We consider several specific approaches and compare their real performance.

A. Hashing general concepts
B. Separate chaining
C. Open addressing with linear probing
D. Hash functions
E. Perfect hashing

VII. String processing

A lot of data used in modern applications is textual data. String processing plays a crucial role in many of the common uses of computation today. This includes considering a data structure for efficient map operations assuming string keys.

A. Sorting strings
B. Tries
C. Regular expressions

LEARNING OUTCOMES. Corresponding to the six big ideas of the course listed earlier, this course’s aim is that at the end of the semester, students are able to

1. State and demonstrate a loop invariant for an algorithm.
2. Determine the performance of an algorithm and identify a big-oh or big-theta category.
3. Differentiate between ADTs and data structures and articulate the trade-offs among data structures studied in class.
4. Articulate the factors in implementing a binary search tree and how they affect the performance of a BST implementation of a map.
5. Articulate the factors in implementing a hashtable and how they affect the performance of a hashtable implementation of a map.
6. Articulate the attributes of a problem that is suited for a dynamic programming solution and implement a given dynamic programming algorithm.

In addition to these, together we have the general objective of seeing algorithm design and implementation as a creative expression for God’s glory and observing algorithmic solutions as part of God’s creation.
Course procedures

How we do this course. The rhythm of this course consists in students reading about new ideas in the text; the ideas being discussed and practiced in class; and students working out the details of the ideas in projects. Most of students’ work for this course is in projects in which they will implement the things we discuss in class. Students’ self-directed study is enforced through practice problems and quizzes. On tests, students apply the things we have learned to new problems.

The course is organized into units (corresponding to chapters in the book, except that the first two chapters make one unit), with units divided into modules. Each module corresponds to between one and three days in class. Folders for units and modules can be found on Schoology.

Each module has a reading associated with it. In some cases the reading should be done before the material is presented in class, but for most modules the student can choose whether to do the reading before or after class, depending on how that student learns best. The reading is important as the “full version” of the information that is only highlighted in class. Most modules also have practice problems, a quiz, and a project.

Quizzes. Quizzes are administered through Schoology, and students can take them when convenient before the indicated due date. These quizzes mainly enforce the reading and practice problems.

Projects. As stated above, projects are where students will do most of their work and, presumably, most of their learning. To a certain extent, students may work on projects at their own pace. The due dates found on Schoology indicate when a student should be done with the individual projects in order to keep up with the course, but no penalty is given for projects later than the posted due date. All projects must be turned in by the last day of classes, April 29. (Official deadline is midnight between April 29 and April 30. Enforced deadline is when I wake up in the morning on April 30.) Projects are graded for correctness, verified by unit tests (and inspection for general conformity to the intent of the project). Students are supplied all unit tests used in grading (except that the right is reserved to modify the data used in the unit tests to make sure the code hasn’t been hardwired to pass unit tests with specific data). See the Policies etc section of this syllabus for other details. Other information about projects, including practical suggestions, can be found on the course website.

Tests. There are four tests, currently scheduled as Test 1 on Fri, Feb 18; Test 2 on Mon, Apr 4; and Tests 3 and 4 on Tues, May 3 (at 10:30am, this course’s final exam block). Note that Tests 3 and 4 together constitute the final exam for this course, but are treated separately for the purposes of this syllabus. Specifically

- Test 1 is on paper and has conceptual problems from the first third of the course (prolegomena, case studies, and graphs).
- Test 2 is at a computer and has programming problems from the first half of the course (prolegomena, case studies, graphs, and trees).
- Test 3 is on paper and has conceptual problems from the last two-thirds of the course (trees, dynamic programming, hash tables, and strings).
- Test 4 is at a computer and has programming problems from the second half of the course (dynamic programming, hash tables, and strings).

Grading. In order to pass the course (that is, to receive a D grade or better), a student must (a) achieve a minimum score of 75% on the projects and (b) achieve an average score of at least 50% on the tests.

(Note that students are given all the test cases used in grading and may resubmit projects throughout the semester. There is no reason for a student who takes the course seriously and acquires basic competency not to get 100% on projects.)
For students who have met the minimum requirements, their semester score is calculated as the weighted average of the following scores (each as a percentage):

<table>
<thead>
<tr>
<th>instrument</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projects</td>
<td>30</td>
</tr>
<tr>
<td>Tests</td>
<td>60 (4 @ 15 each)</td>
</tr>
<tr>
<td>Other</td>
<td>10</td>
</tr>
</tbody>
</table>

...where Other comprises short assignments, in-class activities, readings, quizzes, code style, etc. Some of these may be graded for correctness, others may be marked as done or not. Also, students may get extra credit points applied to the “other” category for each mistake in the book they are the first to discover, at the instructor’s discretion.

I use the “Gradebook” feature on Schoology only to communicate scores on individual assignments and tests. I do not use the Schoology gradebook for my official record-keeping for scores, for calculating semester scores, or determining letter grades. Please ignore any grade estimate that Schoology gives you for this course.

Policies etc

ACADEMIC INTEGRITY. Collaboration among students in the class is permitted on projects and most assignments. Using code for projects from any outside resources (print, electronic, or human) is not permitted. Using ideas from outside resources in projects is not recommended, but if a student does get use any outside resources for concepts used in projects, they must be cited using the same standards as would be used in a research paper. If you relied on an outside resource in any way for any project, submit a file with your project named CITATIONS giving citations for the resources and an explanation of how and why you used them. On any assignment given from the textbook, no resources that specifically serve as solutions to exercises from the textbook may be used.

As much as possible, the projects are designed to minimize the opportunity for students to fool the automated grading, that is, to submit solutions that happen to pass the tests but fail to implement the intended approach to the problem. Students, however, are expected to abide by the intent of the projects and shall not submit solutions that “cheat” the unit tests if they discover a way to do so.

A project or assignment on which a student violates these policies will be rejected without option to resubmit. Repeated offenses will be handled through the college’s official disciplinary procedures.

LATE ASSIGNMENTS. Projects have no due date except that all projects must be turned in by the last day of classes. No credit will be given for late work.

PROJECT GRADING. My intention is to grade projects solely on correctness as demonstrated by unit tests, but I reserve the right to inspect code for conformance to specifications that are not easily verified automatically. You will be given all the unit tests used in grading, except that the raw data used by the unit tests during grading may be different from that provided to students, to prevent students from simply writing code that apes the responses the specific unit tests check for. Extra credit shall be given to students who discover cases not covered by the given unit tests; in that case, the student must write a JUnit test case and provide a would-be solution to the project that passes the current set of unit tests but fails the new one. Bonus extra credit shall be awarded if the instructor’s own solution fails the new test. Moreover, and this is important, that new test case shall be distributed to the class and added to the test cases used in grading. Any student who has already submitted a solution that does not pass the new test case should resubmit a corrected solution.

CODE STYLE. To encourage students to practice good programming style, the instructor reserves the right to assess submitted project code for style and efficiency, to be incorporated into the Other score.

TESTS USING COMPUTERS. For Tests 2 and 4, the computer science lab (Meyer 154) shall be reserved for our use. The lab machines shall be logged into special accounts for the purpose
of test-taking. Internet access shall be turned off. Students shall use only Eclipse and a web browser; the browser shall be used only to view a local copy of the Java API. Students shall be given a few JUnit tests to clarify the problem but not the JUnit tests to be used in grading. [For Spring 2022: This semester the class is overfull, and the CSCI lab cannot accommodate all students. Accordingly, some students will need to take these tests on their own computers. Details will be provided when the test dates approach.]

Attendance. Students are expected to attend all class periods, in person whenever possible. It is courtesy to inform the instructor when a class must be missed or when you must attend virtually.

Examinations. Students are expected to take all tests, quizzes, and exams as scheduled. In the case where a test must be missed because of legitimate travel or other activities, a student should notify the instructor no later than one week ahead of time and request an alternate time to take the test. In the case of illness or other emergencies preventing a student from taking a test as scheduled, the student should notify the instructor as soon as possible, and the instructor will make a reasonable accommodation for the student. The instructor is under no obligation to give any credit to students for tests to which they fail to show up without prior arrangement or notification in non-emergency situations. The final exam block, when Tests 3 and 4 are held, is Tuesday, May 3, at 10:30 am. I do not allow students to take finals early (which is also the college’s policy), so make appropriate travel arrangements.

Accomodations. If you have a documented need for accommodations, I will have received a letter on your behalf from the Disability Services Office. But please talk to me about what accommodations are most useful to you. In particular, if you desire accommodations for test-taking, talk to me a reasonable amount time in advance (say, at least two class periods) so arrangements can be made. (See also the College’s statement below.)

Office Hours. My drop-in office hours this semester are MWF 3:30–4:30pm. You can make an appointment through Calendly; I’m available most of the day on Thursday and sometimes on other days.

Electronic Devices. My intent is for my courses to be electronic-device-free zones. Unless you have made special arrangements with me, please keep all laptops, tablets, phones, etc silenced and put away. If you need to check your phone for something, please discreetly step out into the hall. In particular, **NO TEXTING OR USING SOCIAL MEDIA DURING CLASS MEETINGS.**

All this, the Lord willing.
The college requires that the following statements be included in all syllabi.

Academic Integrity. The Wheaton College Community Covenant, which all members of our academic community affirm, states that, “According to the Scriptures, followers of Jesus Christ will...be people of integrity whose word can be fully trusted (Psalm 15:4; Matt. 5:33-37).” It is expected that Wheaton College students, faculty and staff understand and subscribe to the ideal of academic integrity and take full personal responsibility and accountability for their work. Wheaton College considers violations of academic integrity a serious offense against the basic meaning of an academic community and against the standards of excellence, integrity, and behavior expected of members of our academic community. Violations of academic integrity break the trust that exists among members of the learning community at Wheaton and degrade the College’s educational and research mission.

Gender-Inclusive Language. Please be aware of Wheaton College’s policy on inclusive language. “For academic discourse, spoken and written, the faculty expects students to use gender inclusive language for human being.”

Accommodations. Wheaton College is committed to providing reasonable accommodations for students with documented learning differences, physical or mental health conditions that qualify under the ADA. Any student needing academic adjustments is requested to contact the Learning and Accessibility Services Office as early in the semester as possible. Please call 630.752.5615 or e-mail las@wheaton.edu for further information.

COVID-19 Syllabus Statement. In accordance with the Wheaton College Face Covering Policy, CDC-approved face coverings are required while attending class. Failure to comply with wearing a face covering will result in dismissal from the class session and an unexcused absence. Multiple violations can lead to dismissal from the class. Student Health Services will officially communicate when a student must be absent from class due to quarantine or isolation. Remote learning will not be offered this fall, and the student is encouraged to coordinate with the instructor any needed adjustments to tests or deadlines. Learning & Accessibility Services will also provide assistance for students in quarantine if necessary.

Title IX and Mandatory Reporting. Wheaton College instructors help create a safe learning environment on our campus. Each instructor in the college has a mandatory reporting responsibility related to their role as a faculty member. Faculty members are required to share information with the College when they learn of conduct that violates our Nondiscrimination Policy or information about a crime that may have occurred on Wheaton College’s campus. Confidential resources available to students include Confidential Advisors, the Counseling Center, Student Health Services, and the Chaplain’s Office. More information on these resources and College Policies is available at http://www.wheaton.edu/equityandtitleIX.

Writing Center. The Writing Center is a free resource that equips undergraduate and graduate students across the disciplines to develop effective writing skills and processes. This academic year, the Writing Center is offering in-person consultations in our Center in Buswell Library, as well as synchronous video consultations online [https://www.wheaton.edu/media/writing-center/A-Client’s-Quick-Guide-to-Online-Writing-Consultations---Updated-08.15.20.pdf] Make a one-on-one appointment with a writing consultant here [https://wheaton.mywconline.com/].