Prolegomena unit outline:

- Algorithms and correctness (last week Wednesday and Friday)
- Algorithms and efficiency (Wednesday and today)
- Abstract data types (next week Monday)
- Data Structures (next week Wednesday and Friday)

Today and Friday:

- Go over Ex 1.(6 & 7)
- The general meaning of efficiency
- The analyses of bounded linear search, binary search, and selection sort
- The precise meaning of big-oh, big-theta, and big-omega
- The costs of elemental algorithms
- The analysis of quick sort
Objections to and misconceptions of big-oh notation take forms such as

- Big-oh notation specifies only an upper bound of running time, which might be widely imprecise.
- Big-oh notation measures only the worst case, when the best case or the typical case might be much better.
- Big-oh ignores constants, which can greatly affect running time in practice.
- Algorithms that have the same big-oh category can have widely different running times in practice.
- Big-oh considers only the size of the input, when in fact other attributes of the input can greatly affect running time.
\[\Theta(g) = \{ f : \mathbb{N} \to \mathbb{N} \mid \exists c_0, c_1, n_0 \in \mathbb{N} \text{ such that } \forall n \in [n_0, \infty), c_0 g(n) \leq f(n) \leq c g(n) \} \]
\[
p(x) = c_0 + c_1 x + c_2 x^2 + \cdots + c_{d-1} x^{d-1} + c_d x^d
\]

```python
def eval_poly(coefficients, x):
    x_pow = 1.0
    result = 0.0
    for c in coefficients:
        result += c * x_pow
        x_pow *= x
    return result
```

```python
def eval_poly_horner(coefficients, x):
    result = 0.0
    for c in reversed(coefficients):
        result *= x
        result += c
    return result
```
\[g(n) \sim f(n) \text{ means } \lim_{n \to \infty} \frac{g(n)}{f(n)} = 1. \]

eval_poly is \sim 3n, eval_poly_horner is \sim 2n

\[f \sim g \text{ means the functions are asymptotically equal, that is, that } \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1. \]

For example, \(\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3} \sim \frac{n^3}{6}. \)

\[f = O(g), \text{ which really should be written } f(n) \in O(g(n)), \text{ means that a scaled version of } g \text{ asymptotically bounds } f \text{ above. It means there exists a } c \text{ such that when } n \text{ is large enough, } f(n) \leq cg(n). \text{ For example, } \frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3} = O\left(\frac{n^3}{6}\right) \text{ but also } \frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3} = O(n^3) \text{ and } \frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3} = O(n^4). \]
int merge_sort_r(int sequence[], int aux[], int low, int high)
{
 if (low + 1 >= high)
 return 0;
 else {
 int compars = 0; // the number of comparisons
 int midpoint = (low + high) / 2; // index to the middle of the range
 int k, n;
 n = high - low;
 compars += merge_sort_r(sequence, aux, low, midpoint);
 compars += merge_sort_r(sequence, aux, midpoint, high);
 compars = merge(sequence, aux, low, high);
 return compars;
 }
}
\[C_{ms}(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
n - 1 + 2C_{ms}\left(\frac{n}{2}\right) & \text{otherwise}
\end{cases} \]

\[
\sum_{i=0}^{\lfloor \log n \rfloor - 1} 2^i \cdot \left(\frac{n}{2^i} - 1\right) = \sum_{i=0}^{\lfloor \log n \rfloor - 1} n - \sum_{i=0}^{\lfloor \log n \rfloor - 1} 2^i \\
= n \log n - n + 1
\]
int quick_sort_r(int sequence[], int low, int high)
{
 if (low + 1 >= high) return 0;
 int i, j, temp;
 int compars = 0;
 for (i = j = low; j < high-1; j++) {
 compars++;
 if (sequence[j] < sequence[high-1]) {
 temp = sequence[j];
 sequence[j] = sequence[i];
 sequence[i] = temp;
 i++;
 }
 }
 temp = sequence[i];
 sequence[i] = sequence[j];
 sequence[j] = temp;
 return compars + quick_sort_r(sequence, low, i)
 + quick_sort_r(sequence, i+1, high);
}
\[n \]

\[\begin{array}{c}
\frac{n-1}{2} \\
1 \\
\frac{n-3}{4}
\end{array} \quad \begin{array}{c}
1 \\
\frac{n-3}{4}
\end{array} \quad \begin{array}{c}
\frac{n-1}{2} \\
1 \\
\frac{n-3}{4}
\end{array} \quad \begin{array}{c}
1 \\
\frac{n-3}{4}
\end{array} \]

\[n - 1 \]

\[2 \cdot \left(\frac{n-1}{2} - 1 \right) \]

\[4 \cdot \left(\frac{n-3}{4} - 1 \right) \]

\[1 \quad n \cdot 0 \]
\[(n - 1) + (n - 2) + (n - 3) + \cdots + 1 + 0 = \sum_{i=1}^{n-1} i = \frac{n \cdot (n - 1)}{2} = \frac{n^2 - n}{2}\]
Coming up:

Due Today:
Read Sections 1.(3 & 4)
Do Exercises 1.(27, 28, 42, 43)
Take quiz

Due Tues, Jan 25:
Read Section 2.1
Do Exercise 1.11
Take quiz