Prolegomena unit outline:

- Algorithms and correctness (last week Friday and this week Monday)
- Algorithms and efficiency (Wednesday and Friday)
- Abstract data types (next week Wednesday)
- Data Structures (next week Friday and week-after Monday)

Today and Friday:

- Go over Ex 1.(6 & 7)
- The general meaning of efficiency
- The analyses of bounded linear search, binary search, and selection sort
- The precise meaning of big-oh, big-theta, and big-omega
- The costs of elemental algorithms
- The analysis of merge sort and quick sort
1.6 Write a loop invariant to capture the relationships among sequence, smallest_so_far, smallest_pos, and i in the following algorithm to find the smallest element in a sequence.

```python
def find_smallest(sequence):
    smallest_so_far = sequence[0]
    smallest_pos = 0
    i = 1
    while i < len(sequence):
        if sequence[i] < smallest_so_far:
            smallest_pos = i
            smallest_so_far = sequence[i]
        i += 1
    return smallest_pos
```
1.7 State and prove a loop invariant to show that the following loop clears the list sequence, that is, it sets all of its positions to None. Your loop invariant should explain and relate the variables sequence and i.

```python
i = 0
while i < len(sequence):
    sequence[i] = None
    i += 1
```
From the correctness proof of bounded_linear_search:

By Invariant 1.c \([i \text{ is the number of iterations}],\) after at most \(n\) iterations, \(i = n\) and the guard will fail.

From the correctness proof of binary_search (rewritten):

Let \(i\) be the number of iterations completed. Suppose \(i \geq \lg n\). Then \(2^i \geq n\) and \(\frac{n}{2^i} \leq 1\).

By Invariant 3.b, \([\text{high} - \text{low} \leq \frac{n}{2^i}]\), we have \(\text{high} - \text{low} \leq 1\) and the guard fails.
def bounded_linear_search(sequence, P):
 found = False
 i = 0
 while not found and i < len(sequence):
 found = P(sequence[i])
 i += 1
 if found:
 return i - 1
 else:
 return -1

\[
T_{bls}(n) = a_0 + a_1(n + 1) + a_2 n + a_3 + \max(a_4, a_5)
= b_0 + b_1 n
\]
def binary_search(sequence, T0, item):
 low = 0
 high = len(sequence)
 while high - low > 1:
 mid = (low + high) / 2
 compar = T0(item, sequence[mid])
 if compar < 0: # item comes before mid
 high = mid
 elif compar > 0: # item comes after mid
 low = mid + 1
 else: # item is at mid
 assert compar == 0
 low = mid
 high = mid + 1
 if low < high and T0(item, sequence[low]) == 0:
 return low
 return -1

\[
T_{bs}(n) = c_0 + c_1(\log n + 1) + c_2 \log n + c_3 + \max(c_4, c_5) \\
= d_0 + d_1 \log n
\]
def selection_sort(sequence, T0):
 for i in range(len(sequence)):
 min_pos = i
 min = sequence[i]
 for j in range(i + 1, len(sequence)):
 if T0(sequence[j], min) < 0:
 min = sequence[j]
 min_pos = j
 sequence[min_pos] = sequence[i]
 sequence[i] = min

 \[T_{sel}(n) = f_1 + f_2 n + f_3 n^2 \]
∃ \(T : D \to \mathbb{N} \) relating input to running time on some platform. Interpret the codomain \(\mathbb{N} \) as natural numbers in some unit time.

\[\forall \ T_{\text{absolute}} : \mathbb{N} \to \mathbb{N} \] relating input size to running time on some platform. Interpret the domain \(\mathbb{N} \) as the number of items in the list (or other structure, for other algorithms).

∃ \(T_{\text{worst}} : \mathbb{N} \to \mathbb{N} \) relating input size to the maximum running time on some platform for all inputs of the given size.

∃ \(T_{\text{best}} : \mathbb{N} \to \mathbb{N} \) relating input size to the minimum running time on some platform for all inputs of the given size.

∃ \(T_{\text{expected}} : \mathbb{N} \to \mathbb{N} \) relating input size to the expected value of the running time on some platform over all inputs of the given size.
What is big-oh notation?

Big-oh is a way to categorize functions:

\(O(g) \) is the set of functions that can be bounded above by a scaled version of \(g \).

\[f(n) = O(g(n)) \] (or, more properly \(f \in O(g) \)) means

\[\exists c, n_0 \in \mathbb{N} \text{ such that } \forall n \in [n_0, \infty), f(n) \leq cg(n) \]
Objections to and misconceptions of big-oh notation take forms such as

- Big-oh notation specifies only an upper bound of running time, which might be widely imprecise.
- Big-oh notation measures only the worst case, when the best case or the typical case might be much better.
- Big-oh ignores constants, which can greatly affect running time in practice.
- Algorithms that have the same big-oh category can have widely different running times in practice.
- Big-oh considers only the size of the input, when in fact other attributes of the input can greatly affect running time.
\(\Theta(g) = \{ f : \mathbb{N} \rightarrow \mathbb{N} \mid \exists c_0, c_1, n_0 \in \mathbb{N} \text{ such that } \forall n \in [n_0, \infty), c_0g(n) \leq f(n) \leq cg(n) \} \)
Algorithmic element 1
Can you jump directly to the thing you’re looking for?

Algorithmic element 2
Are you descending a binary tree of the data?

Algorithmic element 3
Do you need to touch every element in the data?

Algorithmic element 4
For every element, do you need to descend a tree, or for every element in the tree, do you touch every element?

Algorithmic element 5
For every element in the data, do you need to a suboperation on the rest of the data?

Algorithmic element 6
Do you need to consider all combinations of input elements?
int merge_sort_r(int sequence[], int aux[], int low, int high)
{
 if (low + 1 >= high)
 return 0;
 else {
 int compars = 0; // the number of comparisons
 int midpoint = (low + high) / 2; // index to the middle of the range
 int k, n;
 n = high - low;
 compars += merge_sort_r(sequence, aux, low, midpoint);
 compars += merge_sort_r(sequence, aux, midpoint, high);
 compars += merge(sequence, aux, low, high);
 return compars;
 }
}
\[C_{ms}(n) = \begin{cases}
0 & \text{if } n \leq 1 \\
n - 1 + 2C_{ms}\left(\frac{n}{2}\right) & \text{otherwise}
\end{cases} \]

\[
\sum_{i=0}^{\lfloor \log n - 1 \rfloor} 2^i \cdot \left(\frac{n}{2^i} - 1\right) = \sum_{i=0}^{\lfloor \log n - 1 \rfloor} n - \sum_{i=0}^{\lfloor \log n - 1 \rfloor} 2^i
\]

\[= n \log n - n + 1 \]
int quick_sort_r(int sequence[], int low, int high)
{
 if (low + 1 >= high) return 0;
 int i, j, temp;
 int compars = 0;
 for (i = j = low; j < high-1; j++) {
 compars++;
 if (sequence[j] < sequence[high-1])
 {
 temp = sequence[j];
 sequence[j] = sequence[i];
 sequence[i] = temp;
 i++;
 }
 }
 temp = sequence[i];
 sequence[i] = sequence[j];
 sequence[j] = temp;
 return compars + quick_sort_r(sequence, low, i)
 + quick_sort_r(sequence, i+1, high);
}
\[n \]

\[\frac{n-1}{2} \]

\[1 \]

\[\frac{n-3}{4} \]

\[1 \]

\[\frac{n-3}{4} \]

\[1 \]

\[2 \cdot \left(\frac{n-1}{2} - 1 \right) \]

\[\frac{n-1}{2} \]

\[1 \]

\[\frac{n-3}{4} \]

\[1 \]

\[\frac{n-3}{4} \]

\[4 \cdot \left(\frac{n-3}{4} - 1 \right) \]

\[1 \]

\[1 \]

\[1 \]

\[1 \]

\[1 \]

\[n - 1 \]

\[n \cdot 0 \]
\[(n - 1) + (n - 2) + (n - 3) + \cdots + 1 + 0 = \sum_{i=1}^{n-1} i = \frac{n \cdot (n - 1)}{2} = \frac{n^2 - n}{2}\]
Coming up:

Due Wednesday, Aug 31 (end of day):
Finish reading Section 1.2
(Exercises 1.(6 & 7) should have been done before class)
Take quiz, if you haven’t already.

Due Fri, Sept 2 (end of day):
Read Sections 1.(3 & 4)
Do Exercises 1.(17–18)
Take quiz

Due Thurs, Sept 8 (end of day):
Read Section 2.1
Do Exercise 1.11
Take quiz