def bounded_linear_search(sequence, P):
 found = False
 i = 0
 while not found and i < len(sequence):
 found = P(sequence[i])
 i += 1
 if found:
 return i
 else:
 return 1

 T_{bls}(n) = a_1 + a_2(n + 1) + a_3n + a_4 + \max(a_5, a_6)
 = b_0 + b_1n
def binary_search(sequence, T0, item):
 low = 0
 high = len(sequence)
 while high - low > 1:
 mid = (low + high) / 2
 compar = T0(item, sequence[mid])
 if compar < 0: # item comes before mid
 high = mid
 elif compar > 0: # item comes after mid
 low = mid + 1
 else: # item is at mid
 assert compar == 0
 low = mid
 high = mid + 1
 if low < high and T0(item, sequence[low]) == 0:
 return low
 else:
 return -1

T_{bs}(n) = c_1 + c_2(\lg n + 1) + (c_3 + \max(c_4, c_5 + c_6, c_5 + c_7)) \lg n
+ c_8 + \max(c_9, c_{10})
= d_0 + d_1 \lg n
def selection_sort(sequence, T0):
 for i in range(len(sequence)):
 min_pos = i
 min = sequence[i]
 for j in range(i + 1, len(sequence)):
 if T0(sequence[j], min) < 0:
 min = sequence[j]
 min_pos = j
 sequence[min_pos] = sequence[i]
 sequence[i] = min

 T_sel(n) = f_1 + f_2 n + f_3 n^2