1. The correctness of an algorithm can be verified formally using loop invariants and other proof techniques and empirically using unit tests.

2. The efficiency of an algorithm can be measured formally using algorithmic analysis, big-oh categories, etc, and empirically by running experiments.

3. Abstract data types, especially list, stack, queue, set, bag, and map, are specified by how they are used; data structures, such as arrays, linked lists, binary trees, and hash tables, are implementation strategies, each with trade-offs.

4. Searching in an unordered data structure such as a map can be done in logarithmic time using a balanced binary search tree.

5. Searching in an unordered data structure can be done in constant time using a hash table.

6. Problems with overlapping subproblems and optimal substructure can be solved efficiently using dynamic programming.