def mat_find1(M, x):
 i = 0
 found = False
 while not found and i < len(M):
 j = 0
 while not found and j < len(M[i]) :
 found = M[i][j] == x
 j += 1
 i += 1
 if found :
 return (i-1, j-1)
 else :
 return None
 return None

Invariant 1 (Outer loop of mat_find1)

(a). \(\forall a \in [0, i-1), \forall b \in [0, m), M[a][b] \neq x \)
(b). \(\sim \) found iff \(\forall b \in [0, m), M[i-1][b] \neq x \)
(c). found iff \(M[i-1][j-1] = x \)
(d). \(i \) is the number of iterations of the outer loop completed.

Invariant 2 (Inner loop of mat_find1)

(a). \(\forall b \in [0, j-1), M[i][b] \neq x \)
(b). found iff \(M[i][j-1] = x \)
(c). \(j \) is the number of iterations of the inner loop completed on the current iteration of the outer loop.

In the worse case, each position in the array is read once, hence \(\Theta(m^2) \) or \(\Theta(n) \).
def mat_find2(M, x):
 i = len(M) - 1
 j = 0
 found = False
 while not found and i >= 0 and j < len(M[i]):
 while i >= 0 and M[i][j] > x:
 i -= 1
 while i >= 0 and j < len(M[i]) and M[i][j] < x:
 j += 1
 if i >= 0 and j < len(M[i]) :
 found = M[i][j] == x

 if found :
 return (i, j)
 else :
 return None

1 2 8 21 43 57 92 103
3 5 9 23 44 61 93 105
17 22 27 30 46 62 95 106
37 39 42 47 48 69 99 108
64 67 71 75 76 77 101 110
73 74 81 88 89 91 107 119
92 96 100 102 103 106 111 121
115 116 126 131 138 146 152 160
def mat_find2(M, x):
 i = len(M) - 1
 j = 0
 found = False
 while not found and i >= 0 and j < len(M[i]):
 while i >= 0 and M[i][j] > x :
 i -= 1
 while i >= 0 and j < len(M[i]) and M[i][j] < x :
 j += 1
 if i >= 0 and j < len(M[i]) :
 found = M[i][j] == x
 if found :
 return (i, j)
 else :
 return None

Invariant 3 (Outer loop of mat_find2)
(a). ∀ a ∈ (i, m), ∀ b ∈ [j, m), M[a][b] > x
(b). ∀ a ∈ [0, i), ∀ b ∈ [0, j), M[a][b] < x
(c). ∀ a ∈ (i, m), ∀ b ∈ [0, j), M[a][b] ≠ x
(d). found iff M[i][j] = x

Invariant 4 (First inner loop of mat_find2)
(a). ∀ a ∈ (i, m), ∀ b ∈ (j, m), M[a][b] > x
(b). m − i − 1 is the total number of iterations of the first inner loop completed (across all iterations of the outer loop)

Invariant 5 (Second inner loop of mat_find2)
(a). ∀ a ∈ [0, i], ∀ b ∈ [0, j), M[a][b] < x
(b). j is the total number of iterations of the second inner loop completed (across all iterations of the outer loop)

On any iteration of the outer loop, at least one of the inner loops must have at least one iteration, or else we have found the item at position (i, j). Thus the number of iterations of the outer loop is less than or equal to the sum of the total number of iterations of the inner loops plus one. Each inner loop will have at most m total iterations. Hence worst case Θ(m) or Θ(√n).