Chapter 5, Dynamic Programming:
▶ Introduction and sample problems (this past Wednesday)
▶ Principles of DP (Today)
▶ DP algorithms, solutions to sample problems (next week Monday)
▶ Begin optimal BSTs/review for test (next week Wednesday)
▶ [Test 2, Fri, Nov 11, not covering DP]
▶ Finish optimal BSTs (week-after Monday)

Today:
▶ Review of memoization
▶ Finishing of coin-changing problem
▶ Introduction of three problems (left over from previous class)
 ▶ 0-1 Knapsack
 ▶ Longest common subsequence
 ▶ Matrix multiplication
▶ Elements of dynamic programming
 ▶ Optimization problems
 ▶ Optimal substructure
 ▶ Dynamic programming algorithms
▶ Solution to the knapsack problem (time permitting)
Ex 6.5. Explain why this function can't use memoization:

```
idgen = -1

def make_unique_id(name):
    # global allows us to modify idgen inside this function
    global idgen
    idgen += 1
    return name + str(idgen)
```
Ex 6.6. Explain why this function can’t use memoization:

```python
def pick_at_random(seq):
    return seq[random.randint(0, len(seq)-1)]
```
Ex. 6.7. Explain why this function can't use memoization:

```python
f = open('data', 'r')

def next_n_lines(n):
    lines = ''
    for i in range(n):
        lines += f.readline()
    return lines
```
Coin-changing

General problem: Given an amount and a currency system, what is the best way (fewest number of coins) to make change for that amount in that currency system.

Example problem instance: What is the best way to make change for 14 units using coins of values $[1,3,4,6]$?

Example subproblem instance: [If we use one 6-unit coin, then] what is the best way to make change for [the remaining] 8 units using [only the remaining coins] of values $[1,3,4]$?

Formal notation: Let $C[i][j]$ be the fewest number of coins needed to make change for amount i using coin denominations 0 through j.
Let $C[i][j]$ stand for the fewest number of coins needed to make change for amount i using only coins 0 through j.

$$C[i][j] = \begin{cases}
0 & \text{if } i = 0 \\
i & \text{if } j = 0 \\
\min_{0 \leq k \leq \frac{i}{D[j]}} \left\{ k + C[i - k \cdot D[j]][j - 1] \right\} & \text{otherwise}
\end{cases}$$
0-1 Knapsack.

Given a capacity c and the value and weight of n items in arrays V and W, find a subset of the n items whose total weight is less than or equal to the capacity and whose total value is maximal.

<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>15</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>V</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

V and W are arrays representing the value and weight of each item, respectively. The table below shows the subset of items and their total value and weight, along with whether the subset is optimal, not optimal, or exceeds the capacity:

- {2, 3} with weight 9 and value 190, exceeds capacity.
- {1, 3} with weight 7 and value 115, not optimal.
- {0, 1, 2} with weight 7 and value 125, optimal.

$c = 7$
Longest common subsequence.

Given two sequences, find the longest subsequence that they have in common.
Matrix multiplication.

\[
\begin{pmatrix} 2 & 8 \\ 5 & 7 \end{pmatrix} \begin{pmatrix} 3 & 6 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 2 \cdot 3 + 8 \cdot 1 & 2 \cdot 6 + 8 \cdot 4 \\ 5 \cdot 3 + 7 \cdot 1 & 5 \cdot 6 + 7 \cdot 4 \end{pmatrix} = \begin{pmatrix} 14 & 44 \\ 22 & 58 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 3 & 12 \\ 2 & 7 & 11 \end{pmatrix} \begin{pmatrix} 4 & 10 \\ 8 & 6 \\ 9 & 5 \end{pmatrix} = \begin{pmatrix} 1 \cdot 4 + 3 \cdot 8 + 12 \cdot 9 & 1 \cdot 10 + 3 \cdot 6 + 12 \cdot 5 \\ 2 \cdot 4 + 7 \cdot 8 + 11 \cdot 9 & 2 \cdot 10 + 7 \cdot 6 + 11 \cdot 5 \end{pmatrix} = \begin{pmatrix} 136 & 88 \\ 163 & 117 \end{pmatrix}
\]

\[
\begin{pmatrix} 1 & 2 & 5 \\ 6 & 8 & 9 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \cdot 3 + 2 \cdot 7 + 5 \cdot 4 \\ 6 \cdot 3 + 8 \cdot 7 + 9 \cdot 4 \end{pmatrix} = \begin{pmatrix} 37 \\ 110 \end{pmatrix}
\]
Matrix multiplication.

Given \(n + 1 \) dimensions of \(n \) matrices to be multiplied, find the optimal order in which to multiply the matrices, that is, find the parenthesization of the matrices that will minimize the number of scalar multiplications.

Assume the following matrices and dimensions: \(A, 3 \times 5 \); \(B, 5 \times 10 \); \(C, 10 \times 2 \); \(D, 2 \times 3 \); \(E, 3 \times 4 \).

\[
(A \times B) \times (C \times (D \times E)) = 3 \cdot 5 \cdot 10 + 2 \cdot 3 \cdot 4 + 10 \cdot 2 \cdot 4 + 3 \cdot 10 \cdot 4 = 374
\]

\[
(A \times (B \times C)) \times (D \times E) = 5 \cdot 10 \cdot 2 + 2 \cdot 3 \cdot 4 + 3 \cdot 5 \cdot 2 + 3 \cdot 2 \cdot 4 = 178
\]

\[
A \times (B \times (C \times (D \times E))) = 2 \cdot 3 \cdot 4 + 10 \cdot 2 \cdot 4 + 5 \cdot 10 \cdot 4 + 3 \cdot 5 \cdot 4 = 364
\]
<table>
<thead>
<tr>
<th>Problem</th>
<th>Thing to find</th>
<th>Optimization</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coin-changing</td>
<td>A bag of coins.</td>
<td>Minimize the number of coins.</td>
<td>The coins' values sum to the given amount.</td>
</tr>
<tr>
<td>Knapsack</td>
<td>A set of objects</td>
<td>Maximize the sum of the objects' values.</td>
<td>The sum of the objects' weights doesn't exceed the given capacity.</td>
</tr>
<tr>
<td>Longest common subsequence</td>
<td>A subsequence in each of two given sequences.</td>
<td>Maximize the length of the subsequences.</td>
<td>The subsequences have the same content.</td>
</tr>
<tr>
<td>Matrix multiplication</td>
<td>A way to parenthesize the matrices being multiplied.</td>
<td>Minimize the number of scalar multiplications required.</td>
<td>The parenthesization is complete and mathematically coherent.</td>
</tr>
<tr>
<td>Optimal BST</td>
<td>A BST for a given set of keys</td>
<td>Minimize the expected length of a search.</td>
<td>The tree satisfies the criteria for a BST.</td>
</tr>
</tbody>
</table>
Progression of dynamic-programming problems:

1. Problem statement . . . *recognizing optimal substructure*
2. Recursive characterization . . . *recognizing overlapping subproblems*
3. Dynamic programming algorithm

 Make a table for subproblems
 Initialize base cases in the table
 For all other subproblems / cells in the table
 For each option in the decision for that subproblem
 Lookup subsubproblem results and compare
 Record best choice for that subproblem
 Return minimum cost or maximum value for top-level problem
0-1 Knapsack.

Given a capacity c and the value and weight of n items in arrays V and W, find a subset of the n items whose total weight is less than or equal to the capacity and whose total value is maximal.

<table>
<thead>
<tr>
<th></th>
<th>V</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>90</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>100</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

$V = 20, 15, 90, 100$

<table>
<thead>
<tr>
<th>set</th>
<th>weight</th>
<th>value</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>${2, 3}$</td>
<td>9</td>
<td>190</td>
<td>exceeds capacity</td>
</tr>
<tr>
<td>${1, 3}$</td>
<td>7</td>
<td>115</td>
<td>not optimal</td>
</tr>
<tr>
<td>${0, 1, 2}$</td>
<td>7</td>
<td>125</td>
<td>optimal</td>
</tr>
</tbody>
</table>

$c = 7$
Knapsack

Let $B[i][j]$ be the value of the best way to fill remaining knapsack capacity i using only items 0 through j. Then $B[c][n - 1]$ is the value-solution to the entire problem, that is,

$$B[c][n - 1] = \max_{K} \sum_{j=0}^{n-1} K[j] V[j]$$

In the general case we have the choice between

$$V[j] + B[i - W[j]][j - 1]$$

value of the jth item

remaining capacity after taking the jth item

The best way to fill the remaining capacity with the remaining items

versus

$$B[i][j - 1]$$

The best way to fill the unchanged capacity with the remaining items
Knapsack

\[
B[i][j] = \begin{cases}
0 & \text{if } j = 0 \text{ and } W[0] > i \quad (0\text{th doesn’t fit}) \\
V[0] & \text{if } j = 0 \text{ and } W[0] \leq i \quad (0\text{th fits}) \\
B[i][j - 1] & \text{if } W[j] > i \quad (j\text{th doesn’t fit}) \\
\max \left\{ V[j] + B[i - W[j]][j - 1], B[i][j - 1] \right\} & \text{otherwise} \quad (j \text{ fits})
\end{cases}
\]
Coming up:

Catch up on projects...
Do Traditional RB project (suggested by Fri, Nov 4)
(Recommended: Do LL RB project for your own practice)

Due Fri, Nov 4 (end of day)
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz

Due Mon, Nov 7 (classtime)
Read Section 6.4
Do Exercises 6.(20, 24, 32)

Due Wed, Nov 9 (end of day)
Do Project 6.1.b as a practice problem
Take quiz