Chapter 7, Hash tables:

▶ General introduction; separate chaining (Friday, Nov 18)
▶ Open addressing (Monday before Thanksgiving)
▶ Hash table performance (Today)
▶ (Begin Chapter 8, Strings (Wednesday))

Today:

▶ Elements of hashtable performance
▶ Clustering and chaining in open addressing
▶ The mathematics of hash functions
▶ Perfect hashing
Coming up:
Do **Open Addressing** project (suggested by Friday, Dec 2)

Due **Today, Nov 28** (end of day) (recommended to have been done before break)
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz (on Section 7.3 etc)

Due **Wed, Nov 30** (end of day)
Read Section 8.1
Do Exercises 8.(4 & 5)

Due **Thurs, Dec 1**
Take quiz (on Section 8.1)

Due **Fri, Dec 2**
Do Exercises 8.(7, 14, 20)
Read Section 8.2
Find: Search the data structure for a given key
Insert: Add a new key to the data structure
Delete: Get rid of a key and fix up the data structure

containsKey() Find
get() Find
put() Find + insert
remove() Find + delete
<table>
<thead>
<tr>
<th>Data Structure</th>
<th>Find</th>
<th>Insert</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unsorted array</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$ [(\Theta(n))]</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Sorted array</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Linked list</td>
<td>$\Theta(n)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Balanced BST</td>
<td>$\Theta(lg \ n)$</td>
<td>$\Theta(1)$ [(\Theta(lg \ n))]</td>
<td>$\Theta(1)$ [(\Theta(lg \ n))]</td>
</tr>
<tr>
<td>What we want</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
\[
\begin{align*}
\text{rehash} & \quad \rightarrow \\
O(1) & \quad c_0 \\
O(1) & \quad c_0 \\
O(1) & \quad c_0 \\
\cdots & \quad \cdots \\
O(1) & \quad c_0 \\
O(n) & \quad c_1 + c_2 n \\
O(1) & \quad c_0 \\
\cdots & \quad \cdots \\
O(1) & \quad c_0
\end{align*}
\]

\[
T(n) = (n - 1)c_0 + c_1 + c_2 n = (c_0 + c_2)n + c_1 - c_0 = \Theta(n)
\]
\[
\frac{(n+1) + n + (n-1) + \cdots + 3 + 2 + 1 + \cdots + 1}{m}
\]

\[
= \frac{m + n + (n-1) + \cdots + 2 + 1}{m}
\]

the initial \(m \) accounting for the last probe in each case

\[
= \frac{m}{m} + \frac{(n+1) \cdot \frac{n}{2}}{m}
\]

as an arithmetic series

\[
\approx 1 + \frac{(n+1) \cdot \frac{n}{2}}{2 \cdot n}
\]

since \(m \) is about \(2 \cdot n \)

\[
= 1 + \frac{n + 1}{4}
\]

by cancellation
\[\frac{[s_0 + 1 + s_0 + (s_0 - 1) + \cdots + 2] + \cdots + 1 + \cdots 1}{m} = 1 + \frac{\sum_{i=0}^{\gamma-1} \sum_{j=1}^{s_i} j}{m}\]
What is the probability that a miss k requires at least i probes?

\[
h(k) \uparrow \quad \cdots \quad \uparrow \quad h(k) + i - 1 \\
\quad h(k) + 1 \quad \quad h(k) + i - 2
\]

Conditional probability

$P(X \mid Y)$: What is the probability of event X in light of event Y?

\[
P(X \land Y) = P(X) \cdot P(X \mid Y)
\]

\[
P(X_0 \land X_1 \land \cdots \land X_{N-1}) = P(X_0) \cdot P(X_1 \mid X_0) \cdot P(X_1 \mid X_0 \land X_1) \cdots P(X_{N-1} \mid X_0 \land \cdots \land X_{N-2})
\]
\[P(T[h(k) + 1] \neq \text{null} \mid T[h(k)] \neq \text{null}) = \frac{n - 1}{m - 1} \]

The probability that a miss requires at least \(i \) probes:

\[
\frac{n}{m} \cdot \frac{n - 1}{m - 1} \cdots \frac{n - i + 2}{m - i + 2}
\leq \left(\frac{n}{m}\right)^{i-1} \quad \text{since } n < m
\]

\[
\leq \alpha^{i-1} \quad \text{by substitution}
\]
\[
\sum_{i=1}^{m} i \cdot P(\text{it takes } i \text{ probes}) = \sum_{i=1}^{m} i \cdot \left(P(\text{it takes at least } i \text{ probes}) - P(\text{it takes at least } i + 1 \text{ probes}) \right) \\
= \sum_{i=1}^{m} P(\text{it takes at least } i \text{ probes}) \quad \text{by telescoping} \\
\leq \sum_{i=1}^{m} \alpha^{i-1} \quad \text{by the previous result} \\
\leq \sum_{i=1}^{\infty} \alpha^{i-1} \quad \text{since } m < \infty \\
= \sum_{i=0}^{\infty} \alpha^{i} \quad \text{by a change of variable} \\
= \frac{1}{1 - \alpha} \quad \text{by geometric series}
\]
Is the following assumption true for linear probing?

\[P(T[h(k) + 1] \neq \text{null} \mid T[h(k)] \neq \text{null}) = \frac{n-1}{m-1} \]

In general, is the following assumption true for a probing strategy?

\[P(T[\sigma(k,1)] \neq \text{null} \mid T[\sigma(k,0)] \neq \text{null}) = \frac{n-1}{m-1} \]

What is the difference between

Each array index is equally likely to be the hash of a given key. vs Each array position is equally likely to be occupied.
Linear probing is biased towards clustering:

<table>
<thead>
<tr>
<th>x</th>
<th>Number of buckets with exactly x previous buckets filled</th>
<th>Number of filled buckets with exactly x previous buckets filled</th>
<th>Probability that a bucket is filled if exactly x previous buckets are filled</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>97</td>
<td>48</td>
<td>.495</td>
</tr>
<tr>
<td>1</td>
<td>48</td>
<td>22</td>
<td>.458</td>
</tr>
<tr>
<td>2</td>
<td>22</td>
<td>12</td>
<td>.545</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>7</td>
<td>.583</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>4</td>
<td>.571</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
<td>.75</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>2</td>
<td>.667</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Expected number of probes for a miss in a hashtable using linear probing (from Knuth):

\[
\frac{1}{2} \cdot \left(1 + \frac{1}{(1 - \alpha)^2}\right)
\]
After \(n \) calls to \texttt{put()} with unique keys, no removals, consider \textbf{average chain length} over all keys (low is good), \textbf{percent of keys that are in their ideal location} (high is good), and \textbf{length of the longest chain} (low is good).

<table>
<thead>
<tr>
<th></th>
<th>Linear probing</th>
<th>Quadratic probing</th>
<th>Double hashing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surnames</td>
<td>1000</td>
<td>2.092 64.7% 31</td>
<td>1.421 75.8% 9</td>
</tr>
<tr>
<td>Mountains</td>
<td>1360</td>
<td>1.568 73.8% 17</td>
<td>1.729 65.8% 11</td>
</tr>
<tr>
<td>Mountains (height)</td>
<td>1360</td>
<td>1.932 75.1% 99</td>
<td>1.882 68.9% 18</td>
</tr>
<tr>
<td>Chemicals</td>
<td>663</td>
<td>1.517 75.0% 16</td>
<td>1.729 65.5% 10</td>
</tr>
<tr>
<td>Chemicals (symbol)</td>
<td>663</td>
<td>1.885 71.0% 20</td>
<td>1.837 66.4% 13</td>
</tr>
<tr>
<td>Books</td>
<td>718</td>
<td>1.419 76.7% 8</td>
<td>1.659 70.0% 11</td>
</tr>
<tr>
<td>Books (ISBN)</td>
<td>718</td>
<td>1.542 74.4% 21</td>
<td>1.670 67.8% 15</td>
</tr>
<tr>
<td>Random strings</td>
<td>5000</td>
<td>1.544 77.6% 49</td>
<td>1.735 69.9% 37</td>
</tr>
<tr>
<td>Random strings</td>
<td>5000</td>
<td>1.531 77.1% 35</td>
<td>1.729 69.8% 28</td>
</tr>
<tr>
<td>Random strings</td>
<td>5000</td>
<td>1.643 77.5% 76</td>
<td>1.754 68.6% 29</td>
</tr>
</tbody>
</table>
Hash functions should distribute the keys *uniformly* and *independently*.

Uniformity:

\[
P(h(k) = i) = \frac{1}{m}
\]

Independence:

\[
P(h(k_1) = i) = P(h(k_1) = i \mid h(k_2) = j)
\]
Why do we talk about integer hashes?
Division method:

\[h(k) = k \mod m \]

Middle square method (see code)

Multiplicative method:

\[h(k) = \lfloor m(k \cdot a - \lfloor k \cdot a \rfloor) \rfloor \]

“Universal” hash (later...)
ASCII sum:

\[h(k) = \left(\sum_{i=0}^{n-1} s[i] \right) \]

String polynomial:

\[h(k) = (k[0] \cdot b^{n-1} + k[1] \cdot b^{n-2} + \cdots + k[n-2] \cdot b + k[n-1]) \mod m \]

Carter-Wegman:

\[h(k) = (h_0(k[0]) + h_1(k[1]) + \cdots + h_{n-1}(k[n-1])) \mod m \]

\[= \left(\sum_{i=0}^{n-1} h_i(k[i]) \right) \mod m \]
Area codes ($n = 303$)

<table>
<thead>
<tr>
<th>Method</th>
<th>Average penalty</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>0.673</td>
<td>0.808</td>
</tr>
<tr>
<td>Mid square</td>
<td>1.090</td>
<td>1.640</td>
</tr>
<tr>
<td>Multiplicative</td>
<td>0.508</td>
<td>0.478</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>0.617</td>
<td>0.696</td>
</tr>
<tr>
<td>Universal</td>
<td>0.578</td>
<td>0.617</td>
</tr>
</tbody>
</table>

Book ISBNs ($n = 718$)

<table>
<thead>
<tr>
<th>Method</th>
<th>Average penalty</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Division</td>
<td>0.618</td>
<td>1.050</td>
</tr>
<tr>
<td>Mid square</td>
<td>0.812</td>
<td>1.480</td>
</tr>
<tr>
<td>Multiplicative</td>
<td>0.565</td>
<td>0.954</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>0.544</td>
<td>0.873</td>
</tr>
<tr>
<td>Universal</td>
<td>0.667</td>
<td>1.150</td>
</tr>
<tr>
<td>Method</td>
<td>Average penalty</td>
<td>Variance</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Randomly generated from ([0, 1000)) ((n = 150))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division</td>
<td>1.36</td>
<td>.958</td>
</tr>
<tr>
<td>Mid square</td>
<td>1.86</td>
<td>1.96</td>
</tr>
<tr>
<td>Multiplicative</td>
<td>1.34</td>
<td>.919</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>1.41</td>
<td>1.07</td>
</tr>
<tr>
<td>Universal</td>
<td>1.39</td>
<td>1.02</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Average penalty</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomly generated from ([0, 1000)) ((n = 400))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Division</td>
<td>.518</td>
<td>1.16</td>
</tr>
<tr>
<td>Mid square</td>
<td>1.73</td>
<td>3.68</td>
</tr>
<tr>
<td>Multiplicative</td>
<td>.405</td>
<td>.930</td>
</tr>
<tr>
<td>Fibonacci</td>
<td>.448</td>
<td>.980</td>
</tr>
<tr>
<td>Universal</td>
<td>.488</td>
<td>1.08</td>
</tr>
<tr>
<td></td>
<td>Average penalty</td>
<td>Variance</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------</td>
<td>----------</td>
</tr>
<tr>
<td>Chemicals ($n = 663$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCII sum</td>
<td>.505</td>
<td>1.00</td>
</tr>
<tr>
<td>String polynomial</td>
<td>.424</td>
<td>.805</td>
</tr>
<tr>
<td>Carter-Wegman</td>
<td>.800</td>
<td>1.63</td>
</tr>
<tr>
<td>Books ($n = 718$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCII sum</td>
<td>.818</td>
<td>1.51</td>
</tr>
<tr>
<td>String polynomial</td>
<td>.745</td>
<td>1.30</td>
</tr>
<tr>
<td>Carter-Wegman</td>
<td>2.06</td>
<td>4.08</td>
</tr>
<tr>
<td>Method</td>
<td>ASCII sum</td>
<td>String polynomial</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Randomly generated strings ((n = 150))</td>
<td>1.32</td>
<td>1.43</td>
</tr>
<tr>
<td>Average penalty</td>
<td>.879</td>
<td>1.09</td>
</tr>
<tr>
<td>Randomly generated strings ((n = 400))</td>
<td>.515</td>
<td>.425</td>
</tr>
<tr>
<td>Variance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A hashing scheme must reduce the occurrence of collisions and “deal” with them when they happen.

- **Separate chaining**, where $m < n$, deals with collisions by chaining keys together in a bucket.
- **Open addressing**, where $n < m$, deals with collisions by finding an alternate location.
- **Perfect hashing** deals with collisions by preventing them altogether.

This topic is parallel with the **optimal BST problem**: What if we knew the keys ahead of time? What if we got to choose the hash function based on what keys we have?
Let H stand for a class of hash functions (a set of hash functions defined by some formula).

Let m be the number of buckets.

H is universal if

$$\forall k, \ell \in \text{Keys}, \quad |\{h \in H \mid h(k) = h(\ell)\}| \leq \frac{|H|}{m}$$
\mathcal{H} is universal if

$$\forall k, \ell \in \text{Keys}, \ |\{h \in \mathcal{H} | h(k) = h(\ell)\}| \leq \frac{|\mathcal{H}|}{m}$$

One particular family of classes of hash functions, given p, a prime number greater than all keys, and m, the number of buckets, is denoted \mathcal{H}_{mp}:

$$\mathcal{H}_{mp} = \{ \ h_{ab}(k) = ((ak + b) \mod p) \mod m \ | \ a \in [1, p) \text{ and } b \in [0, p) \}$$
Theorem H_{pm} is universal.

Proof. Suppose p and m as specified earlier. Suppose $k, \ell \in \text{Keys}$, and $h_{ab} \in H_{pm}$ (which implies supposing that $a \in [1, p)$ and $b \in [0, p)$).

Let $r = (a \cdot k + b) \mod p$ and $s = (a \cdot \ell + b) \mod p$

Subtracting gives us

$$r - s \equiv (a \cdot k + b) - (a \cdot \ell + b) \mod p$$

$$\equiv a \cdot (k - \ell) \mod p$$

Now a cannot be 0 because $a \in [1, p)$. Similarly $k - \ell$ cannot be 0, since $k \neq \ell$. Hence $a \cdot (k - \ell) \neq 0$.

Since p is prime and greater than a, k, and ℓ, it cannot be a factor of $a \cdot (k - \ell)$. In other words, $a \cdot (k - \ell) \mod p \neq 0$. By substitution, $r - s \neq 0$, and so $r \neq s$.

By another substitution, $(a \cdot k + b) \mod p \neq (a \cdot \ell + b) \mod p$.
Define the following function, given \(k \) and \(\ell \), which maps from \((a, b)\) pairs to \((r, s)\) pairs (formally, \([1, p) \times [0, p) \rightarrow [1, p) \times [0, p)\)):

\[
\phi_{k\ell}(a, b) = ((a \cdot k + b) \mod p, (a \cdot \ell + b) \mod p)
\]

Now consider the inverse of that function.

\[
\phi_{k\ell}^{-1}(r, s) = (((r - s) \cdot (k - \ell)^{-1}) \mod p, (r - ak) \mod p)
\]

\[
= (a, b)
\]

The existence of \(\phi^{-1} \) implies that \(\phi \) is a one-to-one correspondence. Hence for each \((a, b)\) pair, there is a unique \((r, s)\) pair. Since the pair \((a, b)\) specifies a hash function, that means that for each hash function in the family \(\mathcal{H}_{pm} \), there is a unique \((r, s)\) pair.
There are $p - 1$ possible choices for a and p choices for b, so there are $p \cdot (p - 1)$ hash functions in family \mathcal{H}_{pm}. Likewise there are p choices for r, and for each r there are $p - 1$ choices for s (since $s \neq r$). Thus we can partition the set \mathcal{H}_{pm} into p subsets by r value, each subset having $p - 1$ hash functions. For a given r, at most one out of every m can have an s that is equivalent to $r \mod m$, in other words, at most $\frac{p-1}{m}$ hash functions. Now sum that for all p of the subsets of \mathcal{H}_{pm}, and we find that the number of hash functions for which k and ℓ collide are

$$p \cdot \frac{p - 1}{m} = \frac{p \cdot (p - 1)}{m} = \frac{|\mathcal{H}_{pm}|}{m}$$

Therefore \mathcal{H}_{pm} is universal by definition. □
Theorem [Probability of any collisions.] If Keys is a set of keys, \(m = |\text{Keys}|^2 \), \(p \) is a prime greater than all keys, and \(h \in \mathcal{H}_p \), then the probability that any two distinct keys collide in \(h \) is less than \(\frac{1}{2} \).

Proof. Suppose we have a set Keys, \(m = |\text{Keys}|^2 \), \(p \) is a prime greater than all keys, and \(h \in \mathcal{H}_p \).

Consider the number of pairs of unique keys. The number of pairs of keys is

\[
\binom{n}{2} = \frac{n!}{2! \cdot (n - 2)!} = \frac{n!}{2 \cdot (n - 2)!} = \frac{n \cdot (n - 1) \cdot (n - 2)!}{2 \cdot (n - 2)!} = \frac{n \cdot (n - 1)}{2}
\]
Since \mathcal{H}_{pm} is universal, each pair collides with probability $\frac{1}{m}$. Multiply that by the number of pairs, and the expected number of collisions is

$$\frac{n \cdot (n-1)}{2} \cdot \frac{1}{m} < \frac{n^2}{2} \cdot \frac{1}{m} \quad \text{since} \ n \cdot (n - 1) < n^2$$

$$= \frac{n^2}{2} \cdot \frac{1}{n^2} \quad \text{since} \ m = n^2$$

$$= \frac{1}{2} \quad \text{by cancelling} \ n^2$$

With the expected number of collisions less than one half, the probability there are any collisions is also less than $\frac{1}{2}$. □
\[h(k) = (93, 0) \in H_{101, 10} \]

\[h_1(k) = (0, 0) \in H_{101, 0} \]
\[h_2(k) = (56, 15) \in H_{101, 9} \]
\[h_3(k) = (47, 22) \in H_{101, 4} \]
\[h_6(k) = (1, 100) \in H_{101, 4} \]
\[h_7(k) = (0, 0) \in H_{101, 0} \]
\[h_8(k) = (0, 0) \in H_{101, 0} \]

\[h_1(k) = (0, 0) \in H_{101, 0} \]
\[h_2(k) = (56, 15) \in H_{101, 9} \]
\[h_3(k) = (47, 22) \in H_{101, 4} \]
\[h_6(k) = (1, 100) \in H_{101, 4} \]
\[h_7(k) = (0, 0) \in H_{101, 0} \]
\[h_8(k) = (0, 0) \in H_{101, 0} \]
Coming up:
Do Open Addressing project (suggested by Friday, Dec 2)

Due Today, Nov 28 (end of day) (recommended to have been done before break)
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz (on Section 7.3 etc)

Due Wed, Nov 30 (end of day)
Read Section 8.1
Do Exercises 8.(4 & 5)

Due Thurs, Dec 1
Take quiz (on Section 8.1)

Due Fri, Dec 2
Do Exercises 8.(7, 14, 20)
Read Section 8.2