Chapter 6, Hash tables:

- General introduction; separate chaining (last Friday)
- Open addressing (Today)
- Hash functions (Wednesday)
- Perfect hashing (Monday after next)
- Hash table performance (Wednesday after next)

Today:

- Review/finish hash table concepts
- Basic idea and example of open addressing
- Terminology, code, and invariant
- Probing strategies
- Deletion
Invariant (Class OpenAddressingHashMap)

1. *The table is not full; there exists* \(i \in [0, m) \) *such that* \(\text{table}[i] = \text{null} \).

2. *There are no breaks in the chain for any key in the table; for all* \(i \in [0, m) \) *such that* \(\text{table}[i] \) *contains key* \(k \),

 - *if* \(h(k) \leq i \), *then for all* \(j \in [h(k), i) \), \(\text{table}[j] \neq \text{null} \);
 - *if* \(i < h(k) \), *then for all* \(j \in [0, i) \cup [h(k), m) \), \(\text{table}[j] \neq \text{null} \).
Invariant (Loop of optimized remove in linear probing.)

For all positions $k \in (i, j)$, gap is the only position, if any, between its ideal place ($h(\text{keys}[k])$) and its actual place (k).
Coming up:

Do Optimal BST project (suggested by this past Friday, April 8)
Do Open addressing with linear probing project (suggested by Monday, April 18)

Due Tues, Apr 12
Do practice problem, recreating separate chaining example
Read Section 7.3
Take quiz

Due Mon, Apr 18
Read Sections 7.(4 & 5)
(No practice problems or quiz)