Chapter 6, Hash tables:

- General introduction; separate chaining (last week Friday)
- Open addressing (Today)
- Hash table performance (Monday after Thanksgiving)

Today:

- Review/finish hash table concepts
- Basic idea and example of open addressing
- Terminology, code, and invariant
- Probing strategies
- Deletion
Invariant (Class OpenAddressingHashMap)

1. *The table is not full; there exists* \(i \in [0, m) \) *such that* \(\text{table}[i] = \text{null} \).

2. *There are no breaks in the chain for any key in the table; for all* \(i \in [0, m) \) *such that* \(\text{table}[i] \) *contains key* \(k \),
 - if \(h(k) \leq i \), then for all \(j \in [h(k), i] \), \(\text{table}[j] \neq \text{null} \);
 - if \(i < h(k) \), then for all \(j \in [0, i] \cup [h(k), m) \), \(\text{table}[j] \neq \text{null} \).
ideal

gap

pos
Invariant (Loop of optimized remove in linear probing.)

For all positions $k \in (i, j)$, gap is the only position, if any, between its ideal place ($h(\text{keys}[k])$) and its actual place (k).
Coming up:

Do **Optimal BST** project *(suggested by Today, Nov 21)*

Due today, Mon, Nov 21 (end of day)
Do Project 7.1 (as practice problem)

Due Mon, Nov 28 (end of day) (recommended to be done before break)
Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz