Chapter 5, Binary search trees:

- Binary search trees; the balanced BST problem (fall-break eve; finished last week Friday)
- AVL trees (last week Friday and this past Monday)
- Traditional red-black trees (last week Wednesday)
- Left-leaning red-black trees (Today)
- “Wrap-up” BSTs (next week Monday)
- Begin dynamic programming (next week Wednesday)

Today:

- LLRB context and definition
- LLRB invariant and cases
- Performance comparison among AVL, TrRB, and LLRB
Why invariants?

- An invariant is a constraint we put on our code to help us guarantee something about it.
- The general invariant for BSTs guarantees the correctness of our find algorithm.
- The invariants for AVL trees and RB trees guarantee logarithmic-time operations.

A stronger constraint is both a stronger constraint to maintain and a stronger constraint to assume.
A left-leaning red-black tree is a binary tree (usually a BST) that is either empty or it is rooted at node \(T \) such that

- \(T \) is either red or black.
- Both of \(T \)'s children are roots of left-leaning red-black trees.
- \(T \)'s right child is black.
- If \(T \) is red, then its left child is black.
- The left-leaning red-black trees rooted at its children have equal blackheight; moreover, the blackheight of the tree rooted at \(T \) is one more than the blackheight of its children if \(T \) is black or equal to that of its children if \(T \) is red.
The first came out red, all his body like a hairy cloak, so they called his name Esau. Gen 25:25

Yet I have loved Jacob, but Esau I have hated. Mal 1:2&3, qtd in Rom 9:13
Left-leaning

Traditional
Potential violations

Ignorant node

Inconsistent backheight

Red null

Double red

Right red

\{ shouldn't happen

\{ fix when they happen
Invariant 28 (Postconditions of RealNode.put() with LLRBBalancer.) Let \(x \) be the root of a subtree on which put() is called and let \(y \) be the node returned, that is, the root of the resulting subtree.

(a) The subtree rooted at \(y \) has a consistent black height.

(b) The black height of subtree rooted at \(y \) is equal to the original black height of the subtree rooted at \(x \).

(c) The subtree rooted at \(y \) has no double-red violations except, possibly, both \(y \) and its left child is red, which can happen only if \(x \) is a left child.

(d) The subtree rooted at \(y \) has no right-red violations.
redden B
blacken A and C
B gets A's color
redden A
α
rotate left about A
α
B
γβ
A
γ
B
β
rotate right about C
redden A
<table>
<thead>
<tr>
<th></th>
<th>Height</th>
<th>Leaf %</th>
<th>Total depth</th>
<th></th>
<th>Height</th>
<th>Leaf %</th>
<th>Total depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>After puts</td>
<td></td>
<td></td>
<td></td>
<td>After removals</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbalanced</td>
<td>32</td>
<td>33.3%</td>
<td>134507</td>
<td>28</td>
<td>16.8%</td>
<td>61207</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31</td>
<td>33.2%</td>
<td>127865</td>
<td>26</td>
<td>17.0%</td>
<td>58171</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>33.1%</td>
<td>129037</td>
<td>26</td>
<td>16.9%</td>
<td>58610</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>33.5%</td>
<td>124463</td>
<td>26</td>
<td>17.3%</td>
<td>56086</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>33.4%</td>
<td>136730</td>
<td>28</td>
<td>16.9%</td>
<td>62092</td>
<td></td>
</tr>
<tr>
<td>AVL</td>
<td>16</td>
<td>43.2%</td>
<td>100327</td>
<td>14</td>
<td>21.5%</td>
<td>46088</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>42.9%</td>
<td>100395</td>
<td>14</td>
<td>21.1%</td>
<td>46028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>42.8%</td>
<td>100341</td>
<td>14</td>
<td>21.1%</td>
<td>46028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>42.8%</td>
<td>100282</td>
<td>14</td>
<td>21.3%</td>
<td>45973</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>43.0%</td>
<td>100582</td>
<td>14</td>
<td>21.2%</td>
<td>46097</td>
<td></td>
</tr>
<tr>
<td>Traditional RB</td>
<td>16</td>
<td>42.8%</td>
<td>101948</td>
<td>16</td>
<td>21.5%</td>
<td>46729</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>42.9%</td>
<td>101226</td>
<td>15</td>
<td>21.4%</td>
<td>46344</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>43.1%</td>
<td>101525</td>
<td>15</td>
<td>21.5%</td>
<td>46462</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>42.7%</td>
<td>101680</td>
<td>16</td>
<td>21.5%</td>
<td>46572</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>42.9%</td>
<td>101292</td>
<td>15</td>
<td>21.4%</td>
<td>46338</td>
<td></td>
</tr>
<tr>
<td>Left-leaning RB</td>
<td>18</td>
<td>42.8%</td>
<td>102288</td>
<td>18</td>
<td>21.6%</td>
<td>46950</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>42.9%</td>
<td>102860</td>
<td>16</td>
<td>21.3%</td>
<td>46774</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>43.1%</td>
<td>101949</td>
<td>17</td>
<td>21.5%</td>
<td>46691</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>42.7%</td>
<td>102011</td>
<td>17</td>
<td>21.6%</td>
<td>46938</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>42.9%</td>
<td>102552</td>
<td>16</td>
<td>21.4%</td>
<td>46764</td>
<td></td>
</tr>
</tbody>
</table>