Chapter 5, Binary search trees:

- Binary search trees; the balanced BST problem (fall-break eve; finishing Today)
- AVL trees (Today and Wednesday)
- Traditional red-black trees (Friday)
- Left-leaning red-black trees (next week Monday)
- “Wrap-up” BST (next week Wednesday)

Today and Wednesday:

- Review BST basics and code base
- BST performance and the balanced BST problem
- Rotations; overview of solutions
- AVL tree definition
- AVL tree cases
- AVL tree performance
Coming up:

- Catch up on older projects
- Do **BST rotations** project (due Wed, Mar 13)
- Do **AVL trees** project (due Mon, Mar 18)

Due Tues, Mar 12 (end-of-day)
Read Section 5.(1 & 2)
Do Exercises 5.(2 & 6)
Take quiz (BSTs)

Due Thurs, Mar 14 (end of day)
Read Section 5.3
Do Exercises 5.(7 & 8)
Take quiz (AVL trees)

Due Tues, Mar 19 (end of day)—but spread it out
Read Sections 5.(4-6)
Take quiz (red-black trees)
A **binary search tree** (BST) over some ordered key type is either

- empty, or
- a node augmented with a key k together with two children, designated *left* and *right*, such that
 - *left* is a binary search tree such that all of the keys in that tree are less than or equal to k, and
 - *right* is a binary search tree such that all of the keys in that tree are greater than or equal to k.

<table>
<thead>
<tr>
<th></th>
<th>Unsorted</th>
<th>Sorted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Find</td>
<td>$\Theta(n)$</td>
<td>$\Theta(lg\ n)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$\Theta(1)$ expected, $\Theta(n)$ worst</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Linked structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Find</td>
<td>$\Theta(n)$</td>
<td>$\Theta(n)$</td>
</tr>
<tr>
<td>Insert</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
<tr>
<td>Delete</td>
<td>$\Theta(1)$</td>
<td>$\Theta(1)$</td>
</tr>
</tbody>
</table>
The *height* of a node (or (sub)tree) is the number of nodes on any path from that node to any leaf, inclusive.

\[
height(c) = \begin{cases}
0 & \text{if } c \text{ is null} \\
\max(\text{height}(c.\ell) + \text{height}(c.r)) + 1 & \text{otherwise}
\end{cases}
\]

The *balance* of a node is the difference between the heights of its left and right children. In an AVL tree, each node’s subtrees’ heights must differ by at most 1:

\[
\forall x \in \text{nodes}, |\text{height}(x.\text{left}) - \text{height}(x.\text{right})| \leq 1
\]

A node that has balance 1 or -1 has a *bias*. A node that (temporarily) has balance 2 or -2 is in *violation*.

(A balance less than -2 or greater than 2 shouldn’t happen even temporarily.)
The diagram illustrates the process of inserting and rotating a node in a tree.

1. Initially, we have a tree with nodes labeled A, B, C, D, E, F, G, and I.
2. An insert operation is performed, which results in the tree structure shown.
3. A rotate operation is then applied, which results in the final tree structure shown.

The nodes are labeled with values that represent their position in the tree.

- Insertion results in a tree with nodes A, B, C, D, E, F, G, and I.
- Rotation results in a tree with nodes D, E, F, G, H, I, J, and K.

The diagram also includes a note indicating that the rotation was performed incorrectly.
Right–Left:

\[
\begin{array}{c}
\text{A} \\
\text{(h) } \alpha \\
\text{[−2]} \\
\text{C} \\
\text{[−1 or 0 or 1]} \\
\text{B} \\
\text{β γ δ} \\
\end{array}
\]

rotate

\[
\begin{array}{c}
\text{A} \\
\text{(h) } \alpha \\
\text{B} \\
\text{β} \\
\text{C} \\
\text{γ δ} \\
\end{array}
\]

fall through

\[
\begin{array}{c}
\text{A} \\
\text{(h) } \alpha \\
\text{[−2]} \\
\text{B} \\
\text{β γ δ} \\
\end{array}
\]

Right–Right:

\[
\begin{array}{c}
\text{A} \\
\text{(h) } \alpha \\
\text{B} \\
\text{β γ δ} \\
\text{[−2 or −1 or 0]} \\
\text{C} \\
\text{γ δ} \\
\end{array}
\]

rotate

\[
\begin{array}{c}
\text{A} \\
\text{β} \\
\text{C} \\
\text{γ δ} \\
\end{array}
\]
Invariant 30 (Postconditions of `RealNode.put()` with AVLBalancer.)
Let x be the root of a subtree on which `put()` is called and y be the node returned, that is, the root of the resulting subtree. The subtree rooted at y has no violations and the height of the subtree rooted at y is equal to or one greater than the original height of the subtree rooted at x.

Proof. Suppose `put()` is called on node x in a BST using AVL balancing which has no violations. There are three cases: x is `null`, x is a `RealNode` containing the key being searched for, or x is a `RealNode` with a different key. We use structural induction with the first two cases as base cases.
Base case 1. Suppose x is `null`, which has height 0. Then the node y returned is a new `RealNode` with `null` as both children, height 1, and balance 0. The subtree rooted at y has no violations and height one greater than the original height of x.

Base case 2. Suppose x is a `RealNode` whose key is equal to the key used for this `put()`. Then the value at node x is overwritten but node x itself is returned (so $y = x$ in this case) with the tree structure unchanged.

Inductive case. Suppose x is a `RealNode` and, without loss of generality, the key used for this `put()` is greater than the key at x, and so `put()` is called on the right child of x. Let h_0 be the height of the tree rooted at x before this call to `put()` on the right child, and let z the root of the subtree that results from this call to `put()` on the right child. Our inductive hypothesis is that the subtree rooted at z has no violations and that its height is equal to or one greater than the height of the original right child of x.
Let h_1 be the height of the tree rooted at x after the call to put() on the right child but before the call to putFixup() with x.

Since since at most the height of its right subtree has increased by one, either $h_1 = h_0$ or $h_1 = h_0 + 1$. By supposition, the balance of x before the call to put() was no less than -1, since we supposed the tree had no violations. Since at most the height of its right subtree has increased by one, the balance of x is now no less than -2. We now have two subcases: Either the balance of x is greater than -2 or it is equal to -2.

Suppose the balance of x is greater than -2. Then the call to putFixup() with x returns x unchanged, which is also returned as the result of put() (again $y = x$), a tree with no violations and height h_1.

On the other hand, suppose the balance of x is equal to -2. Then y is a node other than x returned by putFixup(). Let h_2 be the height of the subtree rooted at y when putFixup() returns. By inspection of the right-right and right-left subcases given above, the subtree rooted at y has no violations and either $h_2 = h_1$ or $h_2 = h_1 - 1$. In either of those cases $h_2 = h_0$ or $h_2 = h_0 + 1$. \[\square\]
\[B_h = \begin{cases}
1 & \text{if } h = 1 \\
2 & \text{if } h = 2 \\
B_{h-2} + B_{h-1} + 1 & \text{otherwise}
\end{cases} \]

\[B_{h+1} = \begin{cases}
2 & \text{if } h = 1 \\
3 & \text{if } h = 2 \\
(B_{h-2} + 1) + (B_{h-1} + 1) & \text{otherwise}
\end{cases} \]

<table>
<thead>
<tr>
<th>(h)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(B_{h+1})</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
</tr>
<tr>
<td>(B_h)</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>
\[B_h + 1 > \frac{\phi^{h+2}}{\sqrt{5}} - 1 \]
\[B_h + 2 > \frac{\phi^{h+2}}{\sqrt{5}} \]
\[\sqrt{5}(B_h + 2) > \phi^{h+2} \]

\[h + 2 < \log_\phi(\sqrt{5}B_h) \]
\[h < \log_\phi(\sqrt{5}B_h) - 2 \]
\[= \log_\phi B_h + \log_\phi \sqrt{5} - 2 \]
\[= \frac{1}{\lg \phi} \lg B_h + \log_\phi \sqrt{5} - 2 \]
Coming up:

- Catch up on older projects
- Do **BST rotations** project (due Wed, Mar 13)
- Do **AVL trees** project (due Mon, Mar 18)

Due **Tues, Mar 12** (end-of-day)
Read Section 5.(1 & 2)
Do Exercises 5.(2 & 6)
Take quiz (BSTs)

Due **Thurs, Mar 14** (end of day)
Read Section 5.3
Do Exercises 5.(7 & 8)
Take quiz (AVL trees)

Due **Tues, Mar 19** (end of day)—but spread it out
Read Sections 5.(4-6)
Take quiz (red-black trees)