Chapter 5, Binary search trees:

- Binary search trees; the balanced BST problem (spring-break eve; finishing Monday)
- AVL trees (Monday and Today)
- Traditional red-black trees (Friday)
- Left-leaning red-black trees (next week Monday)
- “Wrap-up” BST (next week Wednesday)

Today:

- Practice problem
- Review of balanced BST problem, AVL concepts
- Review of AVL cases
- Proof of AVL correctness
- AVL performance
- Solution to practice problem
Ex 5.1. Write the method `bst2Array()`, which takes a simplified BST, represented by the root node, and returns a sorted array containing the keys. The size of the array should be the number of keys, and when given a null node, the method should return an array of size 0. Test using `BST2ATest`. Hint: You may want to write one or more recursive helper methods.

```java
public class BSTNode {
    public final int key;
    public final BSTNode left, right;

    public BSTNode(int key, BSTNode left, BSTNode right) {
        this.key = key;
        this.left = left;
        this.right = right;
    }
}
```
The BST data structure supports the map ADT with $\Theta(\lg n)$ operations, as long as the tree is balanced.

Perfect balance isn’t necessary. The trees need only be “pretty balanced.”

Schemes for keeping trees have a tradeoff between time spent rebalancing vs the benefit of having the tree more balanced. Each scheme needs to ask

- How do we define and measure “balance”?
- What information needs to be stored for that measure?
- How imbalanced is too imbalanced?
- What sequence of rotations are needed to fix up the tree when it becomes too imbalanced?
The *height* of a node (or (sub)tree) is the number of nodes on any path from that node to any leaf, inclusive.

\[
\text{height}(c) = \begin{cases}
0 & \text{if } c \text{ is null} \\
\max(\text{height}(c.\ell) + \text{height}(c.r)) + 1 & \text{otherwise}
\end{cases}
\]

The *balance* of a node is the difference between the heights of its left and right children. In an AVL tree, each node’s subtrees’ heights must differ by at most 1:

\[
\forall x \in \text{nodes}, \ |\text{height}(x.\text{left}) - \text{height}(x.\text{right})| \leq 1
\]

A node that has balance 1 or -1 has a *bias*. A node that (temporarily) has balance 2 or -2 is in *violation*.

(A balance less than -2 or greater than 2 shouldn’t happen even temporarily.)
Invariant 30 (Postconditions of `RealNode.put()` with AVLBalancer.)
Let \(x \) be the root of a subtree on which `put()` is called and \(y \) be the node returned, that is, the root of the resulting subtree. The subtree rooted at \(y \) has no violations and the height of the subtree rooted at \(y \) is equal to or one greater than the original height of the subtree rooted at \(x \).

Proof. Suppose `put()` is called on node \(x \) in a BST using AVL balancing which has no violations. There are three cases: \(x \) is `null`, \(x \) is a `RealNode` containing the key being searched for, or \(x \) is a `RealNode` with a different key. We use structural induction with the first two cases as base cases.
Base case 1. Suppose \(x \) is \texttt{null}, which has height 0. Then the node \(y \) returned is a new \texttt{RealNode} with \texttt{null} as both children, height 1, and balance 0. The subtree rooted at \(y \) has no violations and height one greater than the original height of \(x \).

Base case 2. Suppose \(x \) is a \texttt{RealNode} whose key is equal to the key used for this \texttt{put()} method. Then the value at node \(x \) is overwritten but node \(x \) itself is returned (so \(y = x \) in this case) with the tree structure unchanged.

Inductive case. Suppose \(x \) is a \texttt{RealNode} and, without loss of generality, the key used for this \texttt{put()} method is greater than the key at \(x \), and so \texttt{put()} is called on the right child of \(x \). Let \(h_0 \) be the height of the tree rooted at \(x \) before this call to \texttt{put()} on the right child, and let \(z \) the root of the subtree that results from this call to \texttt{put()} on the right child. Our inductive hypothesis is that the subtree rooted at \(z \) has no violations and that its height is equal to or one greater than the height of the original right child of \(x \).
Let h_1 be the height of the tree rooted at x after the call to put() on the right child but before the call to putFixup() with x. Since since at most the height of its right subtree has increased by one, either $h_1 = h_0$ or $h_1 = h_0 + 1$.

By supposition, the balance of x before the call to put() was no less than -1, since we supposed the tree had no violations. Since at most the height of its right subtree has increased by one, the balance of x is now no less than -2. We now have two subcases: Either the balance of x is greater than -2 or it is equal to -2.

Suppose the balance of x is greater than -2. Then the call to putFixup() with x returns x unchanged, which is also returned as the result of put() (again $y = x$), a tree with no violations and height h_1.

On the other hand, suppose the balance of x is equal to -2. Then y is a node other than x returned by putFixup(). Let h_2 be the height of the subtree rooted at y when putFixup() returns. By inspection of the right-right and right-left subcases given above, the subtree rooted at y has no violations and either $h_2 = h_1$ or $h_2 = h_1 - 1$. In either of those cases $h_2 = h_0$ or $h_2 = h_0 + 1$. \square
Let A_h be an AVL tree of height h with minimal number of nodes.

A_1

A_2

A_3

A_4

A_5

A_h

A_{h-2}

A_{h-1}
Let B_h be the number of nodes in A_h.

$$B_h = \begin{cases}
1 & \text{if } h = 1 \\
2 & \text{if } h = 2 \\
B_{h-2} + B_{h-1} + 1 & \text{otherwise}
\end{cases}$$

$$B_h + 1 = \begin{cases}
2 & \text{if } h = 1 \\
3 & \text{if } h = 2 \\
(B_{h-2} + 1) + (B_{h-1} + 1) & \text{otherwise}
\end{cases}$$

<table>
<thead>
<tr>
<th>h</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_h</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
<td>12</td>
<td>20</td>
</tr>
<tr>
<td>$B_h + 1$</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>13</td>
<td>21</td>
</tr>
</tbody>
</table>
\(B_h + 1 = \text{fib}(h + 2) \). Moreover, \(\text{fib}(i) = \left[\frac{\phi^i}{\sqrt{5}} \right] \), and \(\phi = \frac{1 + \sqrt{5}}{2} \)

\[
B_h + 1 > \frac{\phi^{h+2}}{\sqrt{5}} - 1
\]

\[
B_h + 2 > \frac{\phi^{h+2}}{\sqrt{5}}
\]

\[
\sqrt{5}(B_h + 2) > \phi^{h+2}
\]

\[
h + 2 < \log_{\phi}(\sqrt{5}B_h)
\]

\[
h < \log_{\phi}(\sqrt{5}B_h) - 2
\]

\[
= \log_{\phi} B_h + \log_{\phi} \sqrt{5} - 2
\]

\[
= \frac{1}{\lg \phi} \lg B_h + \log_{\phi} \sqrt{5} - 2
\]
Coming up:

Do BST rotations project (suggested by Wednesday, Mar 16)

Do AVL project (suggested by Monday, Mar 212)

Due Wed, Mar 23 (end of day) (but spread it out)
Read Sections 5.(4-6) [some parts carefully, some parts skim, some parts optional—see Schoology]
Do Exercise 5.14
Take quiz