Semester end:

- RNNs and LSTMs (last week Monday)
- Machine translation (Today)
- Machine translation lab (Wednesday)
- Large language models and text generation (Friday and next week Monday)
- Ethical questions (next week Wednesday)
- Review for final exam (next week Friday)

Today:

- Background of the machine translation problem
- Derivation of the encoder-decoder model
- Specific tasks and difficulties of machine translation
- Evaluation of machine translation
- Social and ethical considerations

Diagrams from Jurafsky and Martin, *Speech and Language Processing*, 3rd ed draft (Jan 7, 2023), Chapters 9 & 13
No more fruit until you finish your hot dog.

Perfect hot dogs no more fruit.

Perfect hot dogs over the fruit.

The hot dog is the perfect fruit.
Figure 9.4 A simple recurrent neural network shown unrolled in time. Network layers are recalculated for each time step, while the weights U, V and W are shared across all time steps.
Figure 9.6 Training RNNs as language models.
Figure 9.9 Autoregressive generation with an RNN-based neural language model.
Figure 9.13 A single LSTM unit displayed as a computation graph. The inputs to each unit consists of the current input, \(x \), the previous hidden state, \(h_{t-1} \), and the previous context, \(c_{t-1} \). The outputs are a new hidden state, \(h_t \) and an updated context, \(c_t \).

Jurafsky and Martin, Sec 9.5, pg 16
Figure 9.14 Basic neural units used in feedforward, simple recurrent networks (SRN), and long short-term memory (LSTM).

Jurafsky and Martin, Sec 9.5, pg 16
Figure 9.15 Four architectures for NLP tasks. In sequence labeling (POS or named entity tagging) we map
Figure 9.16 The encoder-decoder architecture. The context is a function of the hidden representations of the input, and may be used by the decoder in a variety of ways.

Jurafsky and Martin, Sec 9.7, pg 18
Figure 9.17 Translating a single sentence (inference time) in the basic RNN version of encoder-decoder approach to machine translation. Source and target sentences are concatenated with a separator token in between, and the decoder uses context information from the encoder’s last hidden state.

Jurafsky and Martin, Sec 9.8, pg 22
Usually dynamic programming is used as the alignment algorithm (Gale and Church, 1993), in a simple extension of the minimum edit distance algorithm we introduced in Chapter 2.

Jurafsky and Martin, Sec 13.2 (as 10.2), pg 9
Coming up:

- Read J&M chapter 13 (Mon, Nov 27)
- Take the machine translation quiz (Tues, Nov 28)
- Finish stylometry assignment (Fri, Dec 1)
- Do word2Vec programming assignment (Wed, Dec 6)

Remaining things for this semester (not yet posted to Canvas, due dates not set)

- A reading on large language models and/or text generation (not from J&M)
- Another quiz or two
- A short reflection or two on ethical or social questions