def findMissing(a):
 if a[0] != 0:
 return 0
 elif a[-1] == len(a) - 1:
 return len(a)
 else:
 start = 0
 stop = len(a) - 1
 assert a[start] == start and a[stop] == stop + 1
 while stop > start + 1:
 mid = (stop + start) / 2
 if a[mid] == mid :
 start = mid
 else:
 assert a[mid] == mid + 1
 stop = mid
 return stop
start = 0
stop = len(a) - 1
while stop > start + 1 :
 mid = (stop + start) / 2
 if a[mid] == mid :
 start = mid
 else :
 stop = mid

After i iterations,
(a) $a[start] = start$
(b) $a[stop] = stop + 1$
(c) $stop - start = \frac{n}{2^i}$

Initialization. After 0 iterations, (a) and (b) are true by the conditions of the outer if/else chain. Moreover,

$$stop - start = n = \frac{n}{1} = \frac{n}{2^0} = \frac{n}{2^i}$$

Maintenance. Suppose the invariant holds after i iterations for some $i \geq 0$. By the precondition of the function, $a[mid] = mid$ or $a[mid] = mid + 1$. Either way, the change to $start$ and $stop$ preserves the invariant. Moreover,

$$mid - start = \frac{start + stop}{2} - start = \frac{stop - start}{2} = \frac{n}{2^i} = \frac{n}{2^{i+1}}$$
```python
start = 0
stop = len(a) - 1
while stop > start + 1 :
    mid = (stop + start) / 2
    if a[mid] == mid :
        start = mid
    else :
        stop = mid
```

After i iterations,

(a) $a[start] = start$
(b) $a[stop] = stop + 1$
(c) $stop - start = \frac{n}{2^i}$

Termination. *(Informally)* The size of the range $[start, stop)$ decreases by half each time, so after $\lg n$ iterations the range has size one and the loop stops.

(Formally) After $\lg n$ iterations, $stop - start = \frac{n}{2^i} = \frac{n}{2^{\lg n}} = \frac{n}{n} = 1$, and the guard fails.

After the loop terminates, $stop = start + 1$. The loop invariant indicates that $a[start] = start$ but $a[stop] = stop + 1$. Hence $stop$ is the correct result. □
You are playing a computer game in which the hero must pass through a series of rooms and halls collecting treasure. There are $2n$ rooms (in pairs) and $n - 1$ halls interspersed between the pairs. Each room has a one-way door to the next hall, and each hall has two one-way doors to the rooms of the next pair. The hero must, therefore, pass through exactly one room in each pair.

Each room has a certain amount of treasure, $T_{i,j}$. Halls do not have treasure, but they each have a guardian who demands payment to let the hero cross diagonally through the hall. So, to move from $T_{i-1,0}$ to $T_{i,0}$ is free, but to move from $T_{i-1,0}$ to $T_{i,1}$ costs P_i.

Devise and implement an algorithm to find the route that yields the most treasure. Analyze its efficiency.
Let

- \(T_{i,j} \) be the amount of treasure in room \(i, j \). (Given)
- \(P_i \) be the penalty for crossing the hall between the \(i \)th and \(i + 1 \)st pair of rooms. (Given)
- \(C_{i,j} \) be the most treasure than can be obtained on any route ending at room \(i, j \). ("Scratch work")
- \(D_{i,j} \) be the direction the hero should come from in order to get to room \(i, j \) with the most treasure. ("Scratch work")
- \(R \) be the route the hero should take, as a list indicating which side of the hall the hero should be on. (Solution to be returned)

Throughout, variable \(i \) ranges over \([0, n]\) and \(j \) ranges over \([0, 2]\).

\[
C_{i,j} = \begin{cases}
T_{i,j} & \text{if } i = 0 \\
T_{i,j} + \max(C_{i-1,j}, C_{i-1, j+1} \mod 2 - P_{i-1}) & \text{otherwise}
\end{cases}
\]
DP goals in CSCI 345:
▶ Know what DP is and to what sort of problems it applies
▶ Be able to code up a table-populating algorithm when the recursive characterization is given to you.

DP goals in CSCI 445:
▶ Be able to derive a recursive characterization to a given problem.
▶ Be able to code up a table-populating algorithm and an algorithm to reconstruct the optimal solution using the recursive characterization you have derived.
The rod-cutting problem (CLRS pg 360):

Given a table of prices for rods of different lengths and a rod (that is, a length), what is the most valuable way to cut up the rod into smaller rods?

Problem instance in the book:

<table>
<thead>
<tr>
<th>length</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>30</td>
</tr>
<tr>
<td>density</td>
<td>1</td>
<td>2.5</td>
<td>2.66</td>
<td>2.25</td>
<td>2</td>
<td>2.83</td>
<td>2.43</td>
<td>2.5</td>
<td>2.66</td>
<td>3</td>
</tr>
</tbody>
</table>
Problem instance changed slightly:

<table>
<thead>
<tr>
<th>length</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>price</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>17</td>
<td>17</td>
<td>20</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>density</td>
<td>1</td>
<td>2.5</td>
<td>2.66</td>
<td>2.25</td>
<td>2</td>
<td>2.83</td>
<td>2.43</td>
<td>2.5</td>
<td>2.66</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Consider a given rod of length 14. How should we cut it?

Using the greedy strategy (price-densest first), we would do

\[
10 \ 3 \ 1 \\
29 + 8 + 1 = 38
\]

But a better cutting is

\[
6 \ 6 \ 2 \\
17 + 17 + 5 = 39
\]
Representation of the problem, and of an instance of the problem:

- n is the rod length. (Given)
- p is an array of prices, p_i (or $p[i]$) the price for a rod of length i. (Given)
- $i_1, i_2, \ldots i_k$ is a way to cut up the rod, where
 - k is the number of pieces the rod is cut into.
 - i_ℓ is the length of a piece, where $1 \leq \ell \leq k$
 - $i_1 + i_2 + \cdots + i_k = n$
 - $1 \leq k \leq n$
 - $k = 1$ indicates no cuts at all
 - $k = n$ indicates cutting the rod into n pieces of unit length

In the previous example, $i_1 = 6$, $i_2 = 6$, $i_3 = 2$.

- r_n is the (best?) revenue for cutting a rod of length n, is calculated as
 \[
 r_n = \sum_{\ell=1}^{k} p[i[\ell]] = \sum_{\ell=1}^{k} p_i \ell
 \]
- The solution is an array i of length k that maximizes r. (Solution to be returned)
An alternate formulation/representation is based on the position of cuts relative to the end of the original rod.

\[
\begin{array}{|c|c|c|}
\hline
i_1 & i_2 & i_3 \\
0 & 6 & 12 \\
\hline
\end{array}
\]

\[j_0 \quad j_1 \quad j_2 \quad j_3\]

\[n = 14\]

\[j_\ell = \sum_{m=1}^{\ell} i_m = j_{\ell-1} + i_\ell\]
From pg 362: We characterize the optimal substructure as

\[r_n = \max(\begin{array}{c}
p_n \\
r_1 + r_{n-1} \\
r_2 + r_{n-1} \\
\vdots \\
r_x + r_{n-x} \\
\vdots \\
r_{n-1} + r_1 \end{array}) \]
From pg 363: The naïve recursive version and why it’s bad.

\[T(n) = 1 + \sum_{j=0}^{n-1} T(j) = 2^n \]

Verifying this using the substitution method (see Ex 15.1-1):

\[
T(n) = 1 + \sum_{j=0}^{n-1} 2^j \\
= 1 + 1 + 2 + 4 + 8 + \cdots + 2^{n-2} + 2^{n-1} \\
= T(n-1) + 2^{n-1} \\
= 2^{n-1} + 2^{n-1} \\
= 2 \cdot 2^{n-1} \\
= 2^n
\]
Why dynamic programming:
▶ Dynamic programming applies to optimization problems that have overlapping subproblems.
▶ Dynamic programming avoid the bad running time of brute-force ("naïvely recursive") solutions by recording previously computed results in a table (memoization)

The anatomy of the dynamic programming approach from the programmer’s perspective (compare CLRS pg 359):
▶ Characterize the substructure: Determine what the subproblems are and how they relate to the larger problem. (Determine the meaning of the tables.)
▶ Recursively define the problem.
▶ Devise an algorithm to populate the tables of subproblem solutions. (Find how good the best way is.)
▶ Devise an algorithms to reconstruct a solution from the tables. (Find the best way.)