Exit strategy:

- Exact Cover: reduction from SAT (pg 318)
- Ham Cycle: reduction from Exact Cover (p 320)
- HamPath: reduction from Ham Cycle (Ex 7.3.3)
- Undirected Ham Cycle: reduction from Ham Cycle (pg 323)
- TSP: reduction from Uni Ham Cycle (pg 324)
- Knapsack: reduction from Exact Cover (pg 325)
- Indep Set: reduction from 3-SAT (pg 326)
- Clique: reduction from Indep Set (pg 327)
- Longest Cycle: reduction from Ham Cycle (7.3.4.a)
- Subgraph Isomorphism: reduction from Ham Cycle (7.3.4.b)
Definition 7.1.2.: A language $L \subseteq \Sigma^*$ is **NP-complete** if

1. $L \in \mathcal{NP}$
2. For every language $L' \in \mathcal{NP}$, there is a polynomial reduction from L' to L [L is **NP-hard**].

Let \mathcal{NPC} be the class of \mathcal{NP}-complete languages.

Theorem 7.1.1: $\mathcal{P} = \mathcal{NP}$ iff $\exists L \in \mathcal{NPC}$ such that $L \in \mathcal{P}$.

Proving that a problem is \mathcal{NP}-complete shows that it is at least as hard as all the other problems shown to be \mathcal{NP}-complete.
A. Prove $L \in \mathcal{NP}$

1. Describe a certificate.
2. Demonstrate it can be used to check a string/solution in polynomial time.
3. Demonstrate that the certificate itself is succinct (polynomial in size)

usually easy for our problems—ok to do briefly/informally

B. Prove L is \mathcal{NP}-hard

1. Choose a known \mathcal{NP}-complete problem L_2.
2. Describe a reduction τ from L_2 to L.
3. Demonstrate τ can be computed in polynomial time. (Also usually easy.)
4. Demonstrate that $x \in L_2$ iff $\tau(x) \in L$
Reducing Sat to Exact Cover (Given \mathcal{U}, set of set $\mathcal{F} \subseteq \mathcal{P}(\mathcal{U})$, find partition):
Suppose $\{c_1, c_2, \ldots c_{\ell}\}$ is an instance of Sat.
Define the following instance of Exact Cover:

\[
\mathcal{U} = \bigcup \{x_i\} \quad \text{for each variable } i
\]
\[
\bigcup \{c_j\} \quad \text{for each clause } j
\]
\[
\bigcup \{p_{jk}\} \quad \text{for each position } k \text{ in clause } j
\]

\[
\mathcal{F} = \{ \forall j, k \ \{p_{jk}\} \}
\]
\[
\forall i \quad T_{i\top} = \{x_i\} \cup \{p_{jk} | \lambda_{jk} = \sim x_i\}
\]
\[
\forall i \quad T_{i\bot} = \{x_i\} \cup \{p_{jk} | \lambda_{jk} = x_i\}
\]
\[
\forall j, k \ \{c_j p_{jk}\}
\]

▶ At least one of $T_{i\bot}$ or $T_{i\top}$ for each i must be in the cover, which stands for the truth assignment.
▶ At least one of $\{c_j p_{jk}\}$ must be in the cover, which stands for which literal satisfies clause j.
▶ The extra $\{p_{jk}\}$ sets can be chosen as necessary to account for literals not used in satisfying the formula.
Proof that HamiltonPath is NP-Complete

Proof. \(\text{[HamiltontPath is NP.]}\) Suppose \(G = (V, E)\) is a graph, an instance of the HamiltonPath. Let \(p = \langle u_1, u_2, \ldots u_n \rangle\) be a sequence of vertices from \(V\), a proposed Hamilton path in \(G\). With any reasonable representation of \(G\), one can check that each vertex in \(V\) appears uniquely in \(p\), and that for any pair of vertices \(u_i, u_{i+1}\) as they appear in \(p\), the edge \((u_i, u_{i+1})\) is in \(E\). Moreover, the path \(p\) is smaller than the representation of \(G\), so it is succinct.

\(\text{[HamiltonPath is NP-hard.]}\) Next, suppose \(G = (E, V)\) is an instance of HamiltonCycle. Let \(v_1 \in V\) be an arbitrary vertex. Let \(G' = (V', E')\) be a new graph such that \(v_1\) is removed and four new vertices are added, that is, \(V' = V - \{v_1\} \cup \{v_a, v_b, v_c, v_d\}\); and every edge that is incident on \(v_1\) is replaced with two analogous edges incident on \(v_b\) and \(v_c\), and and edges \((v_a, v_b)\) and \((v_c, v_d)\) are added, that is

\[
E' = \left(E - \{(v_1, v_x) \mid (v_1, v_x) \in E\}\right) \\
\cup \{(v_b, v_x), (v_c, v_x) \mid (v_1, v_x) \in E\} \\
\cup \{(v_a, v_b), (v_c, v_d)\}
\]
This reduction is accomplished by one pass over the edges, which is polynomially computable.
Now, suppose \(G \) has a Hamilton cycle, call it \((v_1, v_2, \ldots, v_{|V|-1}, v_1)\). (As a cycle, it has an arbitrary starting/ending point, so we are free to choose \(v_1 \) as the starting point when naming the cycle.) Then \(G' \) has a Hamiltonian path \((v_a, v_b, v_2, \ldots, v_{|V|-1}, v_c, v_d)\).
Conversely, suppose \(G' \) has a Hamiltonian path. Based on how we constructed \(G' \) (for example, the only edge going out of \(v_a \) is \((v_a, v_b)\), and the only edge going into \(v_d \) is \((v_c, v_d)\)), that path must be in the form \((v_a, v_b, v_2, \ldots, v_{|V|-1}, v_c, v_d)\). Then \(G \) has a Hamiltonian cycle \((v_1, v_2, \ldots, v_{|V|-1}, v_1)\).
Therefore Hamilton Path is \(\mathcal{NP} \)-complete. \(\square \)
Reduction from UHC to TSP (LP pg 324).

Differences between UHC and TSP:

- The graph in TSP is *weighted* (interpreted as distances)
- The graph in TSP is *complete*
- A TSP problem has a *budget*

Suppose we have an instance of UHC, an undirected graph $G = (V, E)$. Construct a graph with the same vertices but complete in its edges and with distances

$$d_{i,j} = \begin{cases}
0 & \text{if } i = j \\
1 & \text{if } (v_i, v_j) \in E \\
2 & \text{otherwise}
\end{cases}$$

Set the budget to $|V|$.
Reduction from \textbf{Exact Cover} to \textbf{Knapsack} (LP pg 325).

Given an instance of \textbf{Exact Cover} ($\mathcal{U}, \mathcal{F} \subseteq \mathcal{P}(\mathcal{U})$), construct an instance of \textbf{Knapsack} (\mathcal{S}, K):

$\begin{align*}
\mathcal{S} &= \{1, 2, \ldots |\mathcal{U}| \} \\
K &= 2^{|\mathcal{U}|} - 1 = \sum_{i=0}^{|\mathcal{U}|-1} 2^i
\end{align*}$

Interpret each set in $\mathcal{P}(\mathcal{S})$ as a bit vector.

Problem: Consider $\mathcal{S} = \{1, 2, 3, 4\}$ and proposed cover $\{\{1, 3\}, \{1, 4\}, \{1\}\}$.
Independent Set problem: Given a graph, is there a set of vertices of size \(k \) with none adjacent to each other?

Reduction from 3Sat to Independent Set (LP pg 326–327.)

Suppose we have an instance of 3Sat, \(F = C_1 \land C_2 \land \cdots \land C_m \). WOLOG, suppose each clause has exactly three literals. Construct an instance of Independent Set, \((G, K)\) where \(K = m \) and \(G = (V, E) \) such that

- There is a vertex in \(V \) for each literal occurrence (or clause position) \(c_{i,j} \).
- \((c_{i,j}, c_{x,y}) \in E\) if either
 - \(i = x \) (they are positions in the same clause; this makes a triangle of vertices), or
 - the literals \(c_{i,j} \) and \(c_{x,y} \) are negations of each other.

Suppose an independent set of size \(K \) exists in \(G \). It must include exactly one vertex in each triangle. Make a truth assignment that makes each literal in the set true. Suppose a satisfying truth assignment exists. Then for each triangle, pick one vertex corresponding to a true literal.
Proof that Longest Cycle is \(\mathcal{NP}\)-Complete

Proof. [Longest Cycle is \(\mathcal{NP}\).] Suppose \((G = (V, E), K)\) is an instance of Longest Cycle and \(p\) is a path that is a proposed cycle of length \(K\). An algorithm to check that \(p\) is consistent with \(E\), has no repeated vertices, and has length at least \(K\), is polynomial with any reasonable representation of \(G\). Moreover, since \(p\) is no larger than the representation of \(G\), it is succinct.

[Longest Cycle is \(\mathcal{NP}\)-hard.] Suppose \((G = (V, E))\) is an instance of Hamilton Cycle. Then make an instance of Longest Cycle by letting \(K = |V|\), which obviously can be done in polynomial time. Since \(K = |V|\), any cycle of length (at least) \(K\) must be a Hamilton cycle, and any Hamilton cycle must have length \(K\). Therefore Longest Cycle is \(\mathcal{NP}\)-complete. \(\square\)
Proof that Subgraph Isomorphism is \(\mathcal{NP} \)-Complete

Proof. [Subgraph Isomorphism is \(\mathcal{NP} \).] Suppose \((G_1 = (V_1, E_1), G_2 = (V_2, E_2))\) is an instance of Subgraph Isomorphism and \(f\) is a function \(V_1 \to V_2\) (expressed as a list of pairs where \((v_1,a, v_2,b)\) indicates \(v_1,a \in V_1, v_2,b \in V_2, \text{ and } f(v_1,a) = v_2,b\)) proposed as an isomorphism. An algorithm to check that \(f\) is a one-to-one function and that for all \((v_1,a, v_1,b) \in E_1, (f(v_1,a), f(v_1,b)) \in E_2\), is polynomial with any reasonable representation of \(G\). Moreover, since \(|f| = O(V_1)|\), it is succinct.

[Subgraph Isomorphism is \(\mathcal{NP} \)-hard.] Suppose \((H = (W, F))\) is an instance of Hamilton Cycle. Then construct a graph \(G = (V, E)\) that such that \(|V| = |W|\) and \(E = \{(w_1, w_2), (w_2, w_3), \ldots (w_{|V|}, w_1)\}\) An algorithm to construct this graph takes \(O(V)\) time.

Note that \(E\) has only those edges that make a Hamiltonian cycle. Thus \(G\) is isomorphic to a subgraph of \(H\) iff \(H\) has a Hamiltonian cycle.

Therefore Subgraph Isomorphism is \(\mathcal{NP} \)-complete. \(\square\)