Game plan for today (maximum optimistic):

- Reducing Knapsack to Partition (pg 305)
- The definition of \(NP\)-completeness (pg 308)
- The Bounded Tiling problem (pg 310)
- The Circuit-SAT problem (CLRS pg 1070–1077)
- The map of problems (pg 317)
- Reducing SAT to Exact Cover (pg 318)
- Reducing Exact Cover to HamCycle (pg 320)
- Reducing HamCycle to HamPath (Ex 7.3.3)
Example 7.1.2: Reducing Knapsack to Partition

Knapsack: Given a set S of n integers and capacity k, is there [find] a subset of S that sum exactly to k?

Partition: Given a set S of n integers, can they be partitioned exactly in half (in terms of their sum)?

Let $S = \{a_1, a_2, \ldots, a_n\}$, k be an instance of Knapsack.

Let $H = \frac{1}{2} \sum_{a_i \in S} a_i$ and make set $S_2 = S \cup \{2H + 2k, 4H\}$. This is an instance of Partition.

Suppose a partition exists for S_2, call it $P \cup \{4H\}$ and $(S - P) \cup \{2H + 2k\}$ for some $P \subseteq S$. Then

$$4H + \sum_{a_i \in P} a_i = 2H + 2k + \sum_{a_i \in S - P} a_i$$
$$4H + 2\sum_{a_i \in P} a_i = 2H + 2k + \sum_{a_i \in S} a_i = 2H + 2k + 2H = 4H + 2k$$
$$\sum_{a_i \in P} a_i = k$$

And so P is our solution to Knapsack.

Conversely, suppose there exists $P \subseteq S$, a solution to Knapsack, that is, $\sum_{a_i \in P} a_i = k$. Work backwards algebraically . . .
Definition 7.1.2.: A language $L \subseteq \Sigma^*$ is \mathcal{NP}-complete if

1. $L \in \mathcal{NP}$
2. For every language $L' \in \mathcal{NP}$, there is a polynomial reduction from L' to L [L is \mathcal{NP}-hard].

Let \mathcal{NPC} be the class of \mathcal{NP}-complete languages.

Theorem 7.1.1: $\mathcal{P} = \mathcal{NP}$ iff $\exists L \in \mathcal{NPC}$ such that $L \in \mathcal{P}$.

Proving that a problem is \mathcal{NP}-complete shows that it is at least as hard as all the other problems shown to be \mathcal{NP}-complete.
Bounded tiling: Like the original tiling problem, but we are given the entire first row, and we need to tile only a certain portion, an $s \times s$ square.

The \mathcal{NP}-completeness proof:

Bounded-Tiling is in class \mathcal{NP}: The certificate is the $s \times s$ square. We can check that the square is legal in $O(s^2)$ time. This is polynomial in the size of the input, since the size of the input is $\Omega(s)$.

Now, suppose $L \in \mathcal{NP}$. Then there exists M, a nondeterministic Turing machine that decides L in $p(|x|)$ for some polynomial p, where x ranges over the candidate strings for L.

(Very informal:) Base s on $p(|x|)$, and set up a tiling system analogous to the proof that the original tiling problem is undecidable. A tiling exists iff a computation that accepts x exists (and hence $x \in L$). \qed
A. Prove \(L \in \mathcal{NP} \)

1. Describe a certificate.
2. Demonstrate that the certificate can be used to check a string/solution in polynomial time.
3. Demonstrate that the certificate itself is succinct (polynomial in size) usually easy for our problems—ok to do briefly/informally

B. Prove \(L \) is \(\mathcal{NP} \)-hard

1. Choose a known \(\mathcal{NP} \)-complete problem \(L_2 \).
2. Describe a reduction \(\tau \) from \(L_2 \) to \(L \).
3. Demonstrate \(\tau \) can be computed in polynomial time. (Also usually easy.)
4. Demonstrate that \(x \in L_2 \) iff \(\tau(x) \in L \)
Reducing Sat to Exact Cover:
Suppose \(\{c_1, c_2, \ldots c_\ell\} \) is an instance of Sat.
Define the following instance of Exact Cover:

\[
U = \bigcup \{x_i\} \text{ for each variable } i \\
\text{ } \bigcup \{c_j\} \text{ for each clause } j \\
\text{ } \bigcup \{p_{jk}\} \text{ for each position } k \text{ in clause } j
\]

\[
F = \{ \forall j, k \{p_{jk}\} \\
\forall i \quad T_{i\top} = \{x_i\} \cup \{p_{jk} \mid \lambda_{jk} = \sim x_i\} \\
\forall i \quad T_{i\bot} = \{x_i\} \cup \{p_{jk} \mid \lambda_{jk} = x_i\} \\
\forall j, k \quad \{c_j p_{jk}\} \}
\]

\[
\text{At least one of } T_{i\bot} \text{ or } T_{i\top} \text{ for each } i \text{ must be in the cover, which stands for the truth assignment.}
\]

\[
\text{At least one of } \{c_j p_{jk}\} \text{ must be in the cover, which stands for which literal satisfies clause } j.
\]

\[
\text{The extra } \{p_{jk}\} \text{ sets can be chosen as necessary to account for literals not used in satisfying the formula.}
\]
Proof that HamiltonPath is \mathcal{NP}-Complete

Proof. [HamiltonPath is \mathcal{NP}.] Suppose $G = (V, E)$ is a graph, an instance of the HamiltonPath. Let $p = ⟨u_1, u_2, \ldots, u_n⟩$ be a sequence of vertices from V, a proposed Hamilton path in G. With any reasonable representation of G, one can check that each vertex in V appears uniquely in p, and that for any pair of vertices u_i, u_{i+1} as they appear in p, the edge (u_i, u_{i+1}) is in E. Moreover, the path p is smaller than the representation of G, so it is succinct.

[HamiltonPath is \mathcal{NP}-hard.] Next, suppose $G = (E, V)$ is an instance of HamiltonCycle. Let $v_1 \in V$ be an arbitrary vertex. Let $G' = (V', E')$ be a new graph such that v_1 is removed and four new vertices are added, that is, $V' = V - \{v_1\} \cup \{v_a, v_b, v_c, v_d\}$; and every edge that is incident on v_1 is replaced with two analogous edges incident on v_b and v_c, and edges (v_a, v_b) and (v_c, v_d) are added, that is

$$E' = (E - \{(v_1, v_x) \mid (v_1, v_x) \in E\})$$
$$\cup \{(v_b, v_x), (v_c, v_x) \mid (v_1, v_x) \in E\}$$
$$\cup \{(v_a, v_b), (v_c, v_d)\}$$
This reduction is accomplished by one pass over the edges, which is polynomially computable.

Now, suppose G has a Hamilton cycle, call it $(v_1, v_2, \ldots v_{|V| - 1}, v_1)$. (As a cycle, it has an arbitrary starting/ending point, so we are free to choose v_1 as the starting point when naming the cycle.) Then G' has a Hamiltonian path $(v_a, v_b, v_2, \ldots, v_{|V| - 1}, v_c, v_d)$.

Conversely, suppose G' has a Hamiltonian path. Based on how we constructed G' (for example, the only edge going out of v_a is (v_a, v_b), and the only edge going into v_d is (v_c, v_d)), that path must be in the form $(v_a, v_b, v_2, \ldots, v_{|V| - 1}, v_c, v_d)$. Then G has a Hamiltonian cycle $(v_1, v_2, \ldots v_{|V| - 1}, v_1)$.

Therefore Hamilton Path is \mathcal{NP}-complete. □
Proof that \textsc{Longest Cycle} is \mathcal{NP}-Complete

\textbf{Proof.} [\textsc{Longest Cycle is \mathcal{NP}.}] Suppose $(G = (V, E), K)$ is an instance of \textsc{Longest Cycle} and p is a path that is a proposed cycle of length K. An algorithm to check that p is consistent with E, has no repeated vertices, and has length at least K, is polynomial with any reasonable representation of G. Moreover, since p is no larger than the representation of G, it is succinct.

[\textsc{Longest Cycle is \mathcal{NP}-hard.}] Suppose $(G = (V, E))$ is an instance of \textsc{Hamilton Cycle}. Then make an instance of \textsc{Longest Cycle} by letting $K = |V|$, which obviously can be done in polynomial time. Since $K = |V|$, any cycle of length (at least) K must be a Hamilton cycle, and any Hamilton cycle must have length K.

Therefore \textsc{Longest Cycle} is \mathcal{NP}-complete. \qed
Proof that **Subgraph Isomorphism** is \mathcal{NP}-Complete

Proof. [Subgraph Isomorphism is \mathcal{NP}.] Suppose $(G_1 = (V_1, E_1), G_2 = (V_2, E_2))$ is an instance of **Subgraph Isomorphism** and f is a function $V_1 \rightarrow V_2$ (expressed as a list of pairs where (v_1,a, v_2,b) indicates $v_1,a \in V_1$, $v_2,b \in V_2$, and $f(v_1,a) = v_2,b$) proposed as an isomorphism. An algorithm to check that f is a one-to-one function and that for all $(v_1,a, v_1,b) \in E_1$, $(f(v_1,a), f(v_1,b)) \in E_2$, is polynomial with any reasonable representation of G. Moreover, since $|f| = O(V_1)$, it is succinct.

[Subgraph Isomorphism is \mathcal{NP}-hard.] Suppose $(H = (W, F))$ is an instance of **Hamilton Cycle**. Then construct a graph $G = (V, E)$ such that $|V| = |W|$ and $E = \{(w_1,w_2), (w_2,w_3), \ldots (w_{|V|}, w_1)\}$. An algorithm to construct this graph takes $O(V)$ time.

Note that E has only those edges that make a Hamiltonian cycle. Thus G is isomorphic to a subgraph of H iff H has a Hamiltonian cycle. **Therefore** **Subgraph Isomorphism** is \mathcal{NP}-complete. \square
Reduction from UHC to TSP (LP pg 324).

Differences between UHC and TSP:

- The graph in TSP is *weighted* (interpreted as distances)
- The graph in TSP is *complete*
- A TSP problem has a *budget*

Suppose we have an instance of UHC, an undirected graph $G = (V, E)$. Construct a graph with the same vertices but complete in its edges and with distances

$$d_{i,j} = \begin{cases}
0 & \text{if } i = j \\
1 & \text{if } (v_i, v_j) \in E \\
2 & \text{otherwise}
\end{cases}$$

Set the budget to $|V|$.

Reduction from **Exact Cover** to **Knapsack** (LP pg 325).

Given an instance of **Exact Cover** \((\mathcal{U}, \mathcal{F} \subseteq \mathcal{P}(\mathcal{U}))\), construct an instance of **Knapsack** \((S, K)\):

- \(S = \{1, 2, \ldots |\mathcal{U}|\}\)
- \(K = 2^{|\mathcal{U}|} - 1 = \sum_{i=0}^{|\mathcal{U}|-1} 1\)

Interpret each set in \(\mathcal{P}(S)\) as a bit vector.

Problem: Consider \(S = \{1, 2, 3, 4\}\) and proposed cover \(\{\{1, 3\}, \{1, 4\}, \{1\}\}\).
Independent Set problem: Given a graph, is there a set of vertices of size k with none adjacent to each other?

Reduction from **3Sat** to **Independent Set** (LP pg 326–327.)

Suppose we have an instance of **3Sat**, $F = C_1 \land C_2 \land \cdots \land C_m$. WOLOG, suppose each clause has exactly three literals. Construct an instance of **Independent Set**, (G, K) where $K = m$ and $G = (V, E)$ such that

- There is a vertex in V for each literal occurrence (or clause position) $c_{i,j}$.
- $(c_{i,j}, c_{x,y}) \in E$ if either
 - $i = x$ (they are positions in the same clause; this makes a triangle of vertices), or
 - the literals $c_{i,j}$ and $c_{x,y}$ are negations of each other.

Suppose an independent set of size K exists in G. It must include exactly one vertex in each triangle. Make a truth assignment that makes each literal in the set true. Suppose a satisfying truth assignment exists. Then for each triangle, pick one vertex corresponding to a true literal.