Regular expressions are a notation for specifying (denoting) languages. A regular expression defines/denotes/specifies a langue (a set of strings).

Regular expressions constitute a recursively defined set:

<table>
<thead>
<tr>
<th>Base cases</th>
<th>Recursive cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>∅</td>
<td>$r \mid s$ (in the book as $r \cup s$)</td>
</tr>
<tr>
<td>ε</td>
<td>rs</td>
</tr>
<tr>
<td>$a \in \Sigma$</td>
<td>r^*</td>
</tr>
</tbody>
</table>

A languages for which there exists a regular expression that generates it is called regular. We can talk of the set (or class) of regular languages.
Theorem (Lemma?) 2.3.1: The class of languages accepted by finite automata is closed under union, concatenation, Kleene star, complementation, and intersection.

Rewritten:

If L_1 and L_2 are in the set of languages accepted by DFAs/NFAs, then so are

$L_1 \cup L_2 \quad L_1L_2 \quad L_1^* \quad \overline{L_1} \quad \text{and} \quad L_1 \cap L_2$

Analyzed in terms of quantification:

$$\forall L_1, L_2, \quad \text{if} \quad \exists M_1, M_2 \quad \mid \quad L(M_1) = L_1 \quad \text{and} \quad L(M_2) = L_2$$

$$\text{then} \quad \exists M_3 \quad \mid \quad L(M_3) = L_1 \cup L_2 \quad (\text{etc})$$
Main result:

Theorem 2.3.2: A language L is regular iff $\exists \ M \in NFA$ such that $L(M) = L$.

Corollary:

\[
\text{Set of regular languages} = \text{Set of NFA languages} = \text{Set of DFA languages}
\]
Theorem 2.3.2: A language L is regular iff $\exists M \in NFA$ such that $L(M) = L$.

Proof (outline). (\Rightarrow) Suppose t is a regular expression.

Base cases.

Suppose $t = \varepsilon$

Suppose $t = \emptyset$

Suppose $t = a \in \Sigma$

Inductive cases. Suppose $t = r | s$

We know by induction that there exist M_1 and M_2 such that $L(M_1) = r$ and $L(M_2) = s$.
Theorem 2.3.2: A language L is regular iff $\exists M \in NFA$ such that $L(M) = L$.

Proof (outline) continued. (\Leftarrow) Suppose $M \in NFA$. [We need to construct a regular expression that generates the language that M accepts.]

Label the states of M $q_1, q_2, \ldots q_n$ arbitrarily except that $s = q_1$.

Consider the set of state-transition paths from q_i to q_j that do not include any state q_x for $x > k$.

Let $R(i, j, k)$ be the set of strings that drive the machine from q_i to q_j without stopping at any state q_x for $x > k$.

For any q_i and q_j, show that $R(i, j, k)$ is regular by induction on k.

Hence $R(1, j, |K|)$ is regular for any $q_j \in F$. Therefore $L(M)$ is regular. \square
Non-constructive proof: The set of languages is uncountable, but the set of regular expressions is countable. Hence some languages can’t be specified by a regular expression.

Theorem 2.4.1: Let L be a regular language. There is an integer $n \geq 1$ such that any string $w \in L$ with $|w| \geq n$ can be written as $w = xyz$ such that $y \neq \varepsilon$, $|xy| \leq n$, and $xy^iz \in L$ for each $i \geq 0$.
Theorem 2.4.1: Let L be a regular language. There is an integer $n \geq 1$ such that any string $w \in L$ with $|w| \geq n$ can be written as $w = xyz$ such that $y \neq \varepsilon$, $|xy| \leq n$, and $xy^iz \in L$ for each $i \geq 0$.

This is a pumping theorem:

Proof (sketch). Let M be a DFA that accepts L. Suppose $w \in L$ and w is at least as long as the number of states in M.

At least one state is repeated in the transition sequence, some $q_i = q_j$. Let $xyz = w$ where x is the prefix of w from s to q_i, y is the substring of w from q_i to q_j, and z the suffix of w from q_j to $f \in F$.

When the machine gets back to $q_i = q_j$, it could accept another copy of y—or it could have not had y in the input string at all.

Hence $\forall i, i \geq 0, xy^iz \in L$. \(\square\)