Errata in Discrete Mathematics and Functional Programming

Pg 26: Ex 1.6.9 refers to a distance of $18\frac{1}{2}$ without giving units. Assume inches. Thanks to Cana Baez

Pg 48: Exercise 1.11.2 says that the function should return ~1 in the case that the input is zero, but that conflicts with the **real** return type. Instead, return ~1.0. Thanks to David Topham.

Excercise 1.11.5 mentions replacing Chips with Fries. However, the datatype given in Section 1.10 (available from https://cs.wheaton.edu/~tvandrun/dmfp/ sec1-10-own-types.sml) doesn't have Fries. Either add Fries to the datatype or make this function something like replaceCarrotSticks. Thanks to Kyler Dunn.

 $4! = 4 \cdot 3 \cdot 2 \cdot 1$ should be $4! = 4 \cdot 3 \cdot 2 \cdot 1$. Thanks to Cooper Lazar.

Pg 50: I don't believe there is a way to solve Exercise 1.12.1 using what the student knows at that point and without using ML's **size**. The best solution would be to turn the string into a list using explode and then use the solution to Exercise 2.2.4. The following would work:

... but that's silly, since if we are allowed to use size anyway, there is no reason to write charCount.

Pg 51: Exercise 1.12.5 should tell you to assume input values are nonnegative. Thanks to Hezekiah Valdez.

Pg 100: Exercises 3.2.3 reads $\sim T \lor F \land T \lor T$. This is not an error, but it is inconsistent, since in other examples and exercises I tend to parenthesize expressions fully. Many students miss the brief mention of precedence rules for \lor and \land on pg 98. Read this exercise as $(\sim T \lor (F \land F)) \lor T$.

Pg 105: The example in the middle of the page should be $\sim (\sim p \land q) \lor (p \land \sim p) \equiv p \lor \sim q$. Note the *p* on the right is not negated. This affects the original statement of the problem ("Suppose we were to show that $\sim (\sim p \land q) \lor (p \land \sim p) \equiv p \lor \sim q$ ") and the first three right hand sides of the "Don't do this" column. Spotted by Caleb Josue Ruiz Torres. (Moreover, the = in the "Do this" column should all be \equiv . Spotted by David Topham.)

Do this:		Don't do this:			
$\sim (\sim p \land q) \lor (p \land \sim p)$		$\sim (\sim p \wedge q) \vee (p \wedge \sim p)$	\equiv	$p\vee \sim q$	
$\equiv \sim (\sim p \land q) \lor F$	by negation law	$\sim (\sim p \wedge q) \vee F$	≡	$p\vee \sim q$	by negation law
$\equiv \sim (\sim p \land q)$	by identity law	$\sim (\sim p \land q)$	\equiv	$p\vee \sim q$	by identity law
$\equiv p \lor \sim q$	by De Morgan's	$p \vee \sim q$	\equiv	$p \vee \sim q$	by De Morgan's

Pg 121: "Clearly $u \land p \to q \lor r...$ " should be "Clearly $u \land p \to q \land r...$ "

Pg 135: "... has additive" should be "has additive inverse."

Pg 136 The premise "If Socrates is a human, then he is mortal" doesn't match the form $\forall x \in A, P(x)$. Instead it should read "All humans are mortal." (But then it doesn't match the argument from Section 3.11... Oh well.)

Pg 138: In the *first* example, step vii should cite iii and vi, not iii and iv. In the *second* example, step xi should cite iii (and x and d), not iv.

Pg 139: Ex 3.14.7 premise a should have "for all y in B, P(x, y)" parenthesized, that is:

(a)
$$\forall x \in A, (\forall y \in B, P(x, y)) \rightarrow Q(x)$$

Pg 167: "D and E together make a partition of the powerset of A, $\mathscr{P}(A)$." should be " $\mathscr{P}(D)$ and E together make a partition of the powerset of A, $\mathscr{P}(A)$."

Pg 177: In Exercise 4.10.6, the "termination" condition in Lemma 4.22 is incorrect. It should read:

Lemma 4.22 For all $a, b \in \mathbb{N}$, there exists unique $n, r \in \mathbb{W}$ such that $a = b^n + r$ and $0 \le r < (b-1) \cdot b^n$.

Pg 179: Statement lists are introduced in section 1.3, not section 2.5.

Pg 205: Exercise 5.3.4 should say "requires that $\mathcal{I}_R(a) = \emptyset$ ", that is, element *a* rather than set *A*. Thanks to Janet Davis.

Pg 208. The intention for Ex 5.4.1 was reflexivity fails for zero. However, the definition of reflexivity does allow 0|0 even though division by zero is undefined, Thanks to Janet Davis.

Pg 222: Ex 5.7.4 should read $(S \circ R) \circ Q = S \circ (R \circ Q)$.

Pg 260: In Ex 6.2.14, see Section 1.7 (not 2.5) to review the string type.

Pg 335: Ex 7.3.9 should read, "For example, filter(fn(x) => x mod 2 = 0..."

Pg 359: In Ex 3.9.3, the fifth bullet (which is the first bullet of the second column of exercises, top right corner) should read

• Either $f(a) \in F(A - \{a\})$ or $f(a) \notin F(A - \{a\})$.

Pg 450: The part of the figure in the top right corner should read "Then add edge (1, 4)...", not "Then add edge (3, 4)".

Pg 513: The first bullet under the chapter goals should read "terms about lattices," not "terms about graphs."

Pg 653: The first paragraph under A.1 says that the general forms and set forms were introduced in Chapter 1. They were introduced rather in Chapter 4.

Pg 658: Under "Proving transitivity," the second step should be "Show that *a* is related to *c*. Hence $(a, c) \in R$ by ..."