
Java Interfaces in CS 1 Textbooks

Thomas VanDrunen
Wheaton College, Wheaton, IL

Thomas.VanDrunen@wheaton.edu

Abstract
Java’s interface construct allows for a clear distinction between
subtype polymorphism based on a shared interface and code reuse
based on class extension or inheritance. Design Patterns argues that
in an object-oriented setting, programming should be done to an in-
terface, not to an implementation, that class inheritance is a mech-
anism for code reuse rather than for subtyping and polymorphism,
and that even composition should be favored over class inheritance.
We conclude from this that interface should be introduced prior
to and given more focus than abstract classes and class inheritance.
We survey 27 textbooks from major publishers to show that very
few available texts teach Java this way. We propose an alterna-
tive ordering of material that will promote the principles mentioned
above.

Categories and Subject Descriptors K.3.2 [Computers and Ed-
ucation]: Computer and Information Science Education; D.1.5
[Programming Techniques]: Object-oriented Programming; D.3.3
[Programming Languages]: Language Constructs and Features—
Polymorphism

General Terms Program Design, Pedagogy, Programming Lan-
guages

Keywords Interfaces, Polymorphism, CS 1

1. Introduction
The Java programming language has two features supporting sub-
type polymorphism: class extension and interface1 implementa-
tion. If a class extends another (possibly abstract) class, it inherits
all the members of that class; its type is considered a subtype of
the extended class’s type; and it implicitly shares an interface with
the extended class. If a class implements an interface, it must
provide an implementation of all the methods of the interface,
and its type is considered a subtype of the interface’s type. Java
does not support multiple inheritance, so a class may not extend
more than one class, but a class may implement more than one
interface. Thus class extension can be used for subtype polymor-
phism and code reuse, but not multiple subtyping; interface im-
plementation, on the other hand, can be used for subtype polymor-

1 Throughout this paper, we use interface in typewriter print to refer
to the Java language construct, and interface in plain print to refer to the
general concept, a set of prototypes of public methods.

Copyright is held by the author/owner(s).

OOPSLA’06 October 22–26, 2006, Portland, Oregon, USA.
ACM 1-59593-491-X/06/0010.

phism, including multiple subtyping, but not code reuse for non-
static members. (For simplicity, we omit discussing interfaces
extending other interfaces.)

Textbooks abound for introductory programming courses (CS
1). Research for this paper found 27 textbooks readily available
from major publishers for Java alone (not including variant ver-
sions by the same authors), and several in their fifth or sixth edi-
tion. As one would expect, the ordering, relative prominence, and
motivation for various language features, including class extension
and interface implementation, vary among textbooks. Regard-
less of whether objects are introduced first, early, or late, polymor-
phism is a central concept and one of the most powerful features of
object-oriented programming; naturally, the choice of which lan-
guage features to present first and with most emphasis will affect
how students understand and use polymorphism in program design,
since students tend to remember best and use most what they learn
first. Thus this consideration must play a part in the decision of
instructors who are confronted with a wide array of choices when
selecting a textbook. This paper seeks to provide some guidance on
the matter.

Section 2 considers the difference between code sharing and in-
terface sharing and relates subtyping and polymorphism to these.
We conclude from this that subtype polymorphism should be based
on a shared interface rather than reused implementation, and hence
interface implementation rather than class extension should be
the primary vehicle for polymorphism in well-designed Java pro-
grams. In Section 3, we survey a field of 27 textbooks, categorizing
them by the relative order in which subclassing, abstract classes,
and interfaces are introduced and by the way interfaces are
motivated by the text. This will demonstrate that, with few excep-
tions, textbooks are not using interfaces to teach polymorphism.
Section 4 concludes by suggesting a practical way to implement an
interfaces-first approach to teaching polymorphism, placing poly-
morphism and subtyping before inheritance and code reuse. In-
dividual notes on each textbook surveyed can be found in an ap-
pendix.

2. Interfaces
One of the most influential works on program design in an object-
oriented setting is Design Patterns [13]. More than the individual
patterns cataloged, however, perhaps the most insightful contribu-
tion of the book is the discussion of interfaces and implementation-
sharing found in the introduction, pages 11-28. There the authors
defend the principle

Program to an interface, not an implementation. (Page 18)

To abridge that argument (ellipses omitted for readability):

The set of all signatures defined by an object’s operations
is called the interface to the object. A type is the name
used to denote a particular interface. We say that a type is a
subtype of another if its interface contains the interface of



its supertype. Interfaces are fundamental in object-oriented
systems. Objects are known only through their interfaces.
An object’s interface says nothing about its implementation.
Two objects having completely different implementations
can have identical interfaces.

Dynamic binding lets you substitute objects that have iden-
tical interfaces for each other at run-time. This substitutabil-
ity is known as polymorphism.

An object’s implementation is defined by its class. New
classes can be defined in terms of existing classes using
class inheritance. When a subclass inherits from a parent
class, it includes the definitions of the all the data and
operations that the parent class defines.

It’s important to understand the difference between an ob-
ject’s class and its type. An object’s class defines how the
object is implemented. The class defines the object’s inter-
nal state and the implementation of its operations. In con-
trast, an object’s type only refers to its interface—the set of
requests to which it can respond. An object can have many
types, and objects of different classes can have the same
type.

It’s also important to understand the difference between
class inheritance and interface inheritance (or subtyping).
Class inheritance defines an object’s implementation in
terms of another object’s implementation. In short, it’s a
mechanism for code and representation sharing. In contrast,
interface inheritance (or subtyping) describes when an ob-
ject can be used in place of another. (Pages 13-17)

Thus interface-sharing and class-inheritance are separate con-
cepts. Subtype relationships used for polymorphism are best un-
derstood through interface-sharing. Class-inheritance is merely a
code-reuse mechanism—and perhaps not the best mechanism at
that, as the authors go on to argue for a second principle,

Favor object composition over class inheritance. (Page 20)

Gamma et al mention that it is “easy to confuse these two con-
cepts, because many languages don’t make the distinction explicit”
[13], languages like C++, which was used for most of the exam-
ples in Design Patterns. Java, however, does make a distinction,
with the language features of class-extension and interface-
implementation. Thus, when teaching object-oriented program-
ming in Java, interfaces should be given a place of promi-
nence and be used as the primary means to demonstrate and im-
plement subtyping and polymorphism. Subclassing should be de-
emphasized, discussed as one of several options for reusing code—
others including composition, delegation, and aggregation.

3. Textbook survey
Categorizing textbooks is difficult and subtle, as many factors come
into play: overall approach, kind and quality of pedagogy, clarity
of prose, completeness, target audience, usefulness of examples,
and quality of exercises, among others. None of these, however,
are in view for our survey; instead, we focus on two questions:
In what sequence does the textbook place interfaces in relation
to subclassing and abstract classes? and, What is the principal
motivation given for interfaces as a language construct? The 27
textbooks under review are characterized in relation to these two
questions in the chart in Figure 1, where the textbook abbreviations
are keyed to the appendix.

The sequencing of discussions of subclassing, abstract classes,
and interfaces is plotted by the vertical axis. This categorization
required judgment calls in a few cases, because some textbooks
discuss interfaces in several contexts. Typically in those cases,

in addition to the context of subclassing, inheritance, and polymor-
phism, interfaces are casually introduced earlier in the textbook
in order to explain the Java Collections classes or GUI implementa-
tion with AWT or Swing. Occasionally interfaces are discussed
as a means to enforce a class’s conformity to a specification or for
use with a design pattern, which uses we lumped together as “soft-
ware development.” Four textbooks (Git, ANN, B&P and KMR)
present interfaces only in specialized topics, not in relation to
subclassing and abstract classes. For the other textbooks, effort was
made to discern where their primary discussion of interfaces
comes. Since abstract classes normally are discussed after subclass-
ing (though we propose an alternative in Section 4), the three main
categories represent introducing interfaces before subclassing, be-
tween subclassing and abstract classes, and after abstract classes.
Only five (Cor, Wu, Har, N&H, and BDM) present interfaces
as an independent language construct before subclassing. Placing
interfaces between subclassing and abstract classes is a non-
obvious arrangement, and only two (K&W and Bis) fall there. The
pack (15 of 27) place interfaces after abstract classes.

The motivation for interfaces is categorized along the hor-
izontal axis. This categorization is also difficult because a lan-
guage construct can be used for more than one purpose. There-
fore effort again was made to discern the primary motivation for
interfaces, especially as they are compared to subclassing and
abstract classes. The news is better in this consideration, as a large
number (eight) of texts recognize polymorphism as the main use of
interfaces, though just as many base their discussion on software
development techniques, as explained above. Among texts that dis-
cuss interfaces after abstract classes, the most popular motiva-
tion was an extension of the notion of an abstract class—that is,
an interface is essentially a class that is purely abstract. For two
textbooks (Lia through the fourth edition and Mal), interfaces al-
low for multiple inheritance. This terminology is a bit misleading,
as some consider inheritance to mean class inheritance, for which
Java does not allow multiple inheritance, as opposed to interface
inheritance; it is consistent, however, with Gamma et al [13].

Two other variables are shown on the chart: years in print and
self-identified approach. A textbook’s horizontal placement within
a motivation category is based on the publication year of its first
edition, keyed to labels along the horizontal axis. For textbooks in
multiple editions, a bar extends from the abbreviation to the year
of the most recent edition. This shows that the categorization is not
correlated to the time of publication (though it is interesting to note
that no first editions came out in 1999). Both new and old books
can be found in nearly every categorization.

Shading shows how various textbooks identify themselves with
respect to frequently-advertised approaches to teaching introduc-
tory programming. Not all textbooks made such an identifica-
tion (some, in fact, identify themselves as usable with several
approaches), but others could be broadly labeled as objects-first,
objects-early, or fundamentals-first, shaded dark, medium, and
light, respectively. Two textbooks (Git and Gad) were released
in parallel versions, objects-early and fundamentals-first, and thus
have two shadings. Those that did not self-identify in terms close to
these have no shading. Such a categorization has limited use since
what one author considers objects-early may seem like objects-
first to another, but it does demonstrate that a given sequencing
or motivation is not restricted to a specific approach, as we find
representatives of various approaches throughout our categories.

Five authors (Bronson, Gittleman, Gaddis, Savitch, and Malik)
each have been involved with two textbooks. In the case of Savitch
(Sav1 and Sav2) and Bronson (Bro1 and Bro2), these are com-
pletely separate works and so appear independently in the chart.
For the others, either the two books are variant versions of each
other—so with Gittleman (Git) and Gaddis (Gad)—or the later has



GUI / Event ProgrammingN/A Multiple Inheritance Extension of Abstract Classes Software Development Polymorphism

S&VD

Cor

Before

Subclassing

Special
Only

Classes

Abstract

After

96

Subclassing
Between

Never

Bro2

Gad

P&MD

ANN

Bro1

Lia

Mal

Sav1

Sav2

B&K

W&N

B&P

KMR

ADW

M&W

D&D

L&L

Ril

K&W Bis

Wu

Hor

N&H

Git

and Abstract

01 0696 01 0696 01 0696 01 06 96 01 06 96 01 06

BDM

Points represent textbooks. The vertical axis shows where the principle discussion of interfaces occurs in the textbook. The horizontal
axis shows the motivation given for interfaces. The line extending from a point shows the year for the first and most recent edition, as

keyed on the horizontal axis. Shading shows self-identified approach: light for fundamentals-first, medium for objects-early, dark for
objects-first.

Figure 1. Scatterplot showing when and why various textbooks discuss Java interfaces.

clear continuity with the former—in the case of Malik (Mal)—and
are therefore represented only once in the chart.

4. Conclusions
Our chart shows that with the exception of three (Hor, N&H, and
BDM), introductory programming textbooks are not heeding the
recommendations from Gamma et al [13]. Subclassing is given
first billing, confusing the notions of code reusing and subtyping.
Interfaces are reserved until after abstract classes (though in some
cases they are given “equal time”), and their purpose is often
misplaced or unfocused. In extreme cases, ANN and Git discuss
interfaces only when forced by the needs of GUI programming;
Sav1 considers interfaces optional material through the third
edition (this designation, though removed in the fourth edition,
is preserved, apparently by error, in Displays 7.15 and 7.16); Lia

through the fourth edition and Sav2 put interfaces on the same
level as inner classes; and Bro1 does not mention them at all.

We propose a new order of presentation for core object-oriented
features. After students have learned to write simple, stand-alone
classes for the purposes of inventing new types, packaging data and
functionality together, and data hiding, and once good encapsula-
tion practices are in place, the next conceptual step is substitutabil-
ity and interoperability. The instructor will point out that if several
certain classes have overlapping interfaces, they could, in theory,
be substituted for each other in the code.

There are many standard examples which readily can be em-
ployed for this. Several classes modelling various animals may
all have public methods boolean feed(String food), int
weigh(), and String provoke(), yet they accept or reject dif-
ferent food offerings, grow at different rates and based on different
foods given, and make different noises when provoked. Various
shape classes will all have methods like double perimeter()
and double area(). Classes Polynomial, Rational, and Ex-
ponential, modeling different kinds of mathematical functions,
will have methods double evaluate(double x) and double
integrate(double lower, double upper). None of these
are likely to involve any code sharing (except that a Rational may
contain two Polynomials, an obvious example of composition);
their commonality, rather, is in their interface.

The Java interface will then be introduced as the means to put
this theory into practice. By writing the classes mentioned above to
implement the interfaces Animal, Shape, and Function, the
students will learn subtype polymorphism by using variables of the
interface type and dynamically dispatching methods on expressions
whose static type is the interface. Adding the method Function
derivative() to the Function interface will also illustrate how
the value returned from a method can be a subtype of the declared
return type.

As we alluded already, opportunities to discuss composition,
delegation, and aggregation as means to reuse code should come
naturally. Once students are comfortable with interface imple-
mentation, the time will be right to present inheritance/extension



as a built-in, convenient way to share code in certain designs.
This concept will be introduced by examples where a few of the
classes which implement a specific interface also have dupli-
cate instance variables and identical implementation of methods.
An abstract class—either as a level between the classes and the
interface or in place of the interface—will be used to ex-
tract commonality from the classes. Then the more intricate mat-
ters, such as overriding, shadowing, and super, can be discussed.
Finally, for completeness, the instructor will show that non-abstract
classes also may be extended; it is our contention, however, that if
students have been shown topics in the order presented here and
if they adhere to good object-oriented design principles, they will
find very infrequent use for extending non-abstract classes.

References
[1] J. Adams, L. Nyhoff, and J. Nyhoff. Java: An Introduction to

Computing. Prentice Hall, Upper Saddle River, NJ, 2001.

[2] D. Arnow, S. Dexter, and G. Weiss. Introduction to Programming
Using Java: A Object-Oriented Approach. Addison-Wesley, second
edition, 2004.

[3] D. Barnes and M. Kölling. Objects First with Java: A Practical
Introduction using BlueJ. Prentice Hall, Harlow, England, second
edition, 2005.

[4] D. Bell and M. Parr. Java for Students. Prentice Hall, Harlow,
England, fourth edition, 2005.

[5] J. Bishop. Java Gently. Addison-Wesley, third edition, 2001.

[6] G. Bronson. A First Book of Java. Brooks/Cole, Pacific Grove, CA,
2002.

[7] G. Bronson. Object-Oriented Program Development using Java.
Thomson Course Technology, Boston, MA, 2004.

[8] K. Bruce, A. Danyluk, and T. Murtagh. Java: An Eventful Approach.
Prentice Hall, Upper Saddle River, NJ, 2006.

[9] B. Cornelius. Understanding Java. Addison-Wesley, 2001.

[10] H. Deitel and P. Deitel. Java: How to Program. Prentice Hall, Upper
Saddle River, NJ, sixth edition, 2005.

[11] T. Gaddis. Starting Out with Java 5: Early Objects. Addison-Wesley,
2005. Originally published by Scott Jones.

[12] T. Gaddis. Starting Out with Java 5: From Control Structures to
Objects. Addison-Wesley, 2005. Originally published by Scott Jones.

[13] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995.

[14] A. Gittleman. Computing with Java: Programs, Objects, Graphics.
Addison-Wesley, second edition, 2001. Originally published by Scott
Jones.

[15] A. Gittleman. Computing with Java: Programs, Objects, Graphics.
Addison-Wesley, alternate second edition, 2002. Originally published
by Scott Jones.

[16] C. Horstmann. Computing Concepts with Java Essentials. Wiley,
Hoboken, NJ, third edition, 2003.

[17] S. Kamin, D. Mickunas, and E. Reingold. An Introduction to
Computer Science using Java. McGraw Hill, New York, NY, second
edition, 2002.

[18] E. Koffman and U. Wolz. Problem Solving with Java. Addison
Wesley, second edition, 2002.

[19] J. Lewis and W. Loftus. Java: Software Solutions. Addison Wesley,
fifth edition, 2007.

[20] D. Liang. Introduction to Java Programming. Prentice Hall, Upper
Saddle River, NJ, fifth edition, 2005. Comprehensive version.

[21] D. Malik. Java Programming: From Problem Analysis to Program
Design. Thomson Course Technology, Boston, MA, second edition,

2006.

[22] D. Malik. Java Programming: Program Design including Data
Structures. Thomson Course Technology, Boston, MA, 2006.

[23] R. Morelli and R. Walde. Java, Java, Java: Object-Oriented Problem
Solving. Prentice Hall, Upper Saddle River, NJ, third edition, 2006.

[24] J. Niño and F. Hosch. An Introduction to Programming and Object-
Oriented Design. Wiley, Hoboken, NJ, second edition, 2005.

[25] I. Pohl and C. McDowell. Java by Dissection: The Essentials of Java
Programming. Addison-Wesley, 2000.

[26] D. Riley. The Object of Java. Addison-Wesley, second edition, 2006.

[27] K. Sanders and A. van Dam. Object-Oriented Programming in Java:
A Graphical Approach. Addison-Wesley, 2006. Preliminary edition.

[28] W. Savitch. Java: An Introduction to Problem Solving and
Programming. Prentice Hall, Upper Saddle River, NJ, fourth edition,
2005.

[29] W. Savitch. Absolute Java. Addison Wesley, second edition, 2006.

[30] P. Winston and S. Narasimhan. On to Java 2. Addison-Wesley, third
edition, 2001.

[31] T. Wu. An Introduction to Object-Oriented Programming with Java.
McGraw Hill, New York, NY, fourth edition, 2006.

ADW Arnow, Dexter, and Weiss, 2004, second edition (first edi-
tion in 1998). Includes interfaces after abstract classes at the
end of a chapter on extending class behavior. Motivates as a way
“to impose the requirement that certain behavior be adhered to
for objects that have no direct relationship to each other in the
hierarchy.” Self-described as “discussing objects right from the
start.” [2]

ANN Adams, Nyhoff, and Nyhoff, 2001. Discusses interfaces
only when needed for GUI and event-driven programming.
Self-described as using a “spiral” approach, revisiting topics.
[1]

BDM Bruce, Danyluk, and Murtagh, 2006. Introduces inter-
faces seven chapters before inheritance and extension. The
term polymorphism is not used (except “polymorphic method”
at the end of the chapter), but is still a motivating concept, as
“occasionally we wish to have a variable in a program that can
refer to objects from several different classes.” Self-described
as “objects and events first.” [8]

B&K Barnes and Kölling, 2005, second edition (first edition in
2002). Discusses interfaces as a last topic in a chapter on
“Further Abstraction Techniques” including abstract classes.
Interfaces “are similar to abstract classes in which all meth-
ods are abstract.” Title identifies book as “objects first.” [3]

B&P Bell and Parr, 2005, fourth edition (first edition in 1997). Dis-
cusses interfaces not until 13 chapters after inheritance and
abstract classes. “Two uses for interfaces are in design and
to promote interoperability,” hence motivation is categorized as
software development. Self-described as a graphics and GUI-
based approach. [4]

Bis Bishop, 2001, third edition (first edition in 1997). Besides an
early mention in context of Enumerations, discusses inter-
faces in a chapter on abstraction and inheritance, between sub-
classing and abstract classes. The first motivation is to “encap-
sulate a guarantee” that a class will provide certain methods,
but the larger context is “abstraction” (partially used as a stand-
in for “polymorphism”). Intended approach “some of both” of
GUI (and requiring objects) first and of foundational concepts
first. [5]



Bro1 Bronson, 2002. Interfaces completely absent. First half of
the book is considered “fundamentals” and does not included
object-oriented features, hence fundamentals-first. [6]

Bro2 Bronson, 2004. In a 749-page book, a total of 8 pages
on inheritance and polymorphism, with abstract classes and
interfaces together receiving less than two pages. Intended
approach “introduce[s] the concept of objects and classes im-
mediately.” [7]

Cor Cornelius, 2001. Anticipates the approach suggested in this
paper. “It is better to make a clearer separation between im-
plementation inheritance and interfaces. I think it is impor-
tant to teach interfaces early.” However, explicit discussion
of polymorphism is absent from the book, and interfaces are
first described as “the ideal construct for documenting the set
of operations for a type,” hence the software development cat-
egorization. Considered here to be fundamentals-first as it con-
sciously is not object-first. [9]

D&D Deitel and Deitel, 2005, sixth edition (first edition in 1996).
Chapter on polymorphism introduces polymorphism in con-
text of subclassing, followed by abstract classes, followed by
interfaces as a case study, demonstrating their use for mul-
tiple subtyping. Self-described as “early classes and objects.”
[10]

Hor Horstmann, 2003, third edition (first edition in 1997). The
clearest example of the approach advocated in this paper, intro-
ducing interfaces together with polymorphism two chapters
before inheritance. Self-described as objects- and classes-first.
[16]

Gad Gaddis, 2005. Discusses interfaces at the end of a chap-
ter on inheritance, after subclassing and abstract classes. “An
interface is similar to an abstract class that has all abstract
methods.” Published in two versions, “From Control Structures
to Objects” (which briefly mentions interfaces in the context
of GUI and event programming) and “Early Objects”. [12, 11]

Git Gittleman, 2001/2002, second edition (first edition in 1998).
Introduces interfaces on demand for event-driven program-
ming; a later chapter on inheritance never mentions them. Pub-
lished in two versions, one for control structures before objects
and an “alternate second edition” for objects before control
structures (designated here as fundamentals-first and objects-
early, respectively). [14, 15]

K&W Koffman and Wolz, 2002, second edition (first edition in
1998). Introduces interfaces following extension and poly-
morphism but before abstract classes, all in a chapter on hi-
erarchies, inheritance, and interfaces. The expressed moti-
vation is “to specify a set of requirements that is imposed on
a collection of classes” (hence the software development cat-
egory), but polymorphism was discussed immediately before.
Self-described as “classes and objects early.” [18]

KMR Kamin, Mickunas, Reingold, 2002, second edition (first edi-
tion in 1997). Includes interfaces independently for what is
essentially the Strategy pattern [13]. Inheritance as a whole (in-
cluding abstract classes) is only touched on in a short chapter
along with packages and exceptions, and polymorphism is ab-
sent from the book. New to the second edition is that “object-
oriented programming is used from the beginning of the book.”
[17]

Lia Liang, 2005, fifth edition (first edition in 1998). The latest
edition (subtitled “Comprehensive Version”) puts interfaces
as the second half of a chapter including abstract classes and
moves towards treating interfaces as a variation on ab-
stract classes. Our chart shows the fourth edition, which puts

interfaces on the same level as inner classes and motivates
them by noting “sometimes it is necessary to derive a subclass
from several classes.” Self-described as “fundamentals-first.”
[20]

L&L Lewis and Loftus, 2007, fifth edition (first edition in 1997).
Describes interfaces early (two chapters before subclassing),
but without discussion of polymorphism. Thorough treatment
of interfaces occurs in chapter on polymorphism, after ab-
stract classes. Identified here as “objects-first” because of in-
tent that “all processing should be discussed in object-oriented
terms”; however, it claims to “use a natural progression. . . [to]
real object-oriented solutions.” [19]

Mal Malik, 2006, second edition (first edition in 2003). Mentions
interfaces early for GUI and event programming. Discussion
in chapter on inheritance and polymorphism happens after ab-
stract methods are motivated by the need for multiple inheri-
tance. No clear self-identification of approach. Published with
and without CS 2 data structures material. [21, 22]

M&W Morelli and Walde, 2006, third edition (first edition in
2000). Interfaces touched on early (before subclassing of
polymorphism) in a GUI section. Primary discussion of in-
terfaces occurs as the last new information in a chapter on
inheritance and polymorphism, after abstract classes, “a third
form of polymorphism,” though given about equal time with
abstract classes. Self-described as “objects-early.” [23]

N&H Niño and Hosch, 2005, second edition (first edition in 2001).
As advocated here, introduces interfaces before inheri-
tance/extension. The motivation of subtyping is shown soon,
and hence the categorization with polymorphism, though ex-
plicit connection to polymorphism is not made until the chapter
on inheritance, in connection with method overriding. Self-
described as “objects-first.” [24]

P&MD Pohl and McDowell, 2000. Discusses interfaces near
the end of a chapter on inheritance, after subclassing and ab-
stract classes. Suggests thinking of one as “a pure abstract
class,” though multiple inheritance is also talked about. Ap-
proach “begins by explaining how basic data types and control
statements are used traditionally, then progresses to the object-
oriented features.” [25]

Ril Riley, 2006, second edition (first edition in 2002). Discusses
interfaces after abstract classes at the end of a chapter on
polymorphism, following a chapter on inheritance/extension.
Although mentioning that an interface “is a bit like the ulti-
mate abstract class,” polymorphism is the context and first mo-
tivation. Self-described as “object-centric.” [26]

Sav1 Savitch, 2005, fourth edition (first edition in 1998). Touches
on interfaces early (before subclassing or polymorphism) in
an optional GUI section. Primary discussion of interfaces de-
scribes them as an “extreme case of an abstract class,” compris-
ing two pages in a 65-page chapter on subclassing, inheritance,
and polymorphism. Self-described as flexible, usable for sev-
eral classroom approaches. [28]

Sav2 Savitch, 2006, second edition (first edition in 2003). Intro-
duces interfaces five chapters after polymorphism and ab-
stract classes in a chapter with inner classes, as “the extreme
case of an abstract class.” Intentionally organized as a reference
book rather than for a particular pedagogical approach. [29]

S&VD Sanders and van Dam, 2006. Devotes a chapter to inter-
faces following a chapter on inheritance that includes abstract
classes. Interfaces “specify a set of responsibilities. . . [and]
allow us to highlight the different roles played by each class,”
hence software development category; however, “interface



polymorphism” is discussed in the next chapter, though after
“inheritance polymorphism.” Self-described as objects- (and
graphics-) first. [27]

W&N Winston and Narasimhan, 2001, third edition (first edition
in 1996). Discusses interfaces in dedicated chapter, follow-
ing ones on abstract classes and class hierarchies. Motivates
as way “to enforce requirements and document,” hence soft-
ware development category. Seems to be a quick introduction
for those with experience in another language. [30]

Wu Wu, 2006, fourth edition (first edition in 1998). Very little on
interfaces, but most of it comes before subclassing to explain
the List interface and to juggle several versions of a class
for incremental design. “[T]akes a full-immersion approach to
object-oriented programming.” [31]


