Computer Science 243

Discrete Mathematics and Functional Programming
Fall 2008
Thomas VanDrunen



Meeting time: MWF 9:15-10:20 am.
Meeting place: Armerding 123
Office hours: MTuWThF 2:00-3:00 pm; Th 9:00-11:00 am.
Contact: 112 Armerding; 752-5692; Thomas.VanDrunen@wheaton.edu
http://cslab.wheaton.edu/~tvandrun/cs243

Syllabus: ps pdf
ML programming assignment guide


Final exam: Tuesday, Dec 16, 10:30 am.


Moon's dayWoden' s dayFrigga's day

Aug 25

NO CLASS

Aug 27

Set. Sets and elements. 1.(1-4)
Slides

Pg 10: 1.4.(1-12). READ 1.5.
Two-set exercises
Three-set exercises

Aug 29

ML values; visual verification 1.(5 & 6)
Slides

Pg 14: 1.5.(1, 3, 5, 6); pg 16: 1.6.(1,3, 5, 6, 8)

Sep 1

NO CLASS

Sep 3

ML functions; set concepts. 1.(7 & 8)

Pg 18: 1.7.(2, 4, 5, 6); pg 20: 1.8.(2-5). READ 1.9

Sep 5

Lists; functions on lists 1.(9 & 10)
Code from class

Pg 23: 1.9.(4 & 5); pg 24:(1, 2, 6, 7)

Sep 8

Cartesian products; powersets. 1.(11 & 12)
Slides
Code from class

Pg 26: 1.11.(1, 2, 5, 7-9, 16); pg 25: 1.12.(3, 9, 12)

Sep 10

Finishing up sets. 1.(13-15)
Slides
Code from class

Pg 30: 1.13.(1-6)

Sep 12

Proposition. Introduction. 1.(1-4)

Pg 38: 2.2.(1-4); pg 40: 2.3.(1-3); pg 42: 2.4.(6-8)

Sep 15

Conditionals. 2.(5-8)
Slides
Code from class

Pg 45: 2.6.(1, 3, 8-12)

Sep 17

Arguments. 2.(9-10)

Pg 47: 2.7.(2-4); pg 51: 2.9.(5 & 6); pg 52: 2.10.(2 & 3)

Sep 19

Predicates and quantifiers. 2.(11 & 12)

Pg 52: 2.10.(5 & 6); pg 56: 2.12.(1-3, 7-11)

Sep 22

Multiple quantification 2.(13 & 14)
Code from class

Pg 59: 2.13.(2, 4-6); pg 61: 2.14.(1-5)

Sep 24

Review
Review sheet

Sept 26

TEST

Sept 29

Proof. Subset proofs. 3.(1 & 2)

Pg 68: 3.2.(2, 4-7)

Oct 1

Set equality and set emptiness proofs. 3.(3 & 4)

Pg 70: 3.3.(8, 12, 15, 17); pg 71: 3.4.(4, 6, 7)

Oct 3

Proofs of conditional propositions. 3.(5-8)

Pg 72: 3.5.(2 & 4); pg 73: 3.6.(1, 4, 6); pg 74: 3.7.(1 & 2)

Oct 6

A case study: powersets. 3.9
Slides

Pg 77: 3.9.(2, 3, 5)

Oct 8

From theorems to algorithms. 3.10

Pg 79: 3.10.(2-4)

Oct 10

Relation. Introduction to relations. 4.(1-3)
Slides

Pg 86: 4.1.1; pg 88: 4.2.(1 & 2); pg 89: 4.3.(1, 4, 5, 7-9)
Two-set exercises
One-set exercises

Oct 13

Properties of relations. 4.4

Pg 92: 4.4.(6-8)

Oct 15

Equivalence relations. 4.5

Pg 93: 4.5.(4, 6, 9, 10)

Oct 17

Computing properties of relations. 4.(6 & 7)
Code from class

Pg 95: 4.6.(1 & 3); pg 97: 4.7.1

Oct 20

NO CLASS

Oct 22

Transitive closure. 4.(8 & 9)

Pg 99: 4.8.(1-3); pg 102: 4.9.(1 & 2)

Oct 24

Partial order relations. 4.(10 & 11)

Pg 104: 4.10.(1-4, 9); pg 105: 4.11(1, 7)

Oct 27

Review

Oct 29

TEST

Oct 31

Function. Introduction to functions. 5.(1-3)
Code from class

Pg 111: 5.1.1; pg 112: 5.2.(2&3); pg 114: 5.1.(5 & 7)
Function exercises

Nov 3

Images and inverse images. 5.(4 & 5)
Code from class

Pg 119: 5.4.(6-10); pg 120: 5.5.(1 & 2)

Nov 5

Function properties and composition. 5.(6-8)

Pg 122: 5.6.(1, 3, 6); pg 126: 5.8.(1, 4, 8)

Nov 7

Cardinality. 5.9

Pg 127: 5.8.(3, 5, 10)

Nov 10

Combinatorics. 5.(10 & 11)
Code from class

Pg 131: 5.11.(1, 2, 4, 5, 6)

Nov 12

Self reference. Peano numbers. 6.1
Code from class and for the assignment

Pg 146: 6.1.(1-9); pg 148: 6.2.(12-14)

Nov 14

Trees and the Huffman encoding. 6.(2 & 3)
Slides
Code from class and for the assignment

Pg 152: 6.3.(1-4)

Nov 17

No-credit quiz.
Structural induction. 6.4

Pg 155: 6.4.(1, 3-5)

Nov 19

Mathematical induction. 6.(5 & 6)

Pg 158: 6.5.(1 & 2). READ 6.7

Nov 21

Loop invariants. 6.(7&8)
Solutions to select exercises

Pg 171: 6.8.(2-4)

Nov 24

Special topics. 5.12
Slides
Review sheet

Nov 26

NO CLASS

Nov 28

NO CLASS

Dec 1

Review

Dec 3

TEST

Dec 5

Program. Fixed-point iteration. 7.(1 & 2)
Code from class

Pg 177: 7.1.(3,4); pg 184: 7.2.(1, 3, 4)

Dec 8

Pipe and filter. 7.(3 & 4)
Code from class
Code for HW

Pg 191: 7.4.(1-3)

Dec 10

Memoization. 7.(5-7)
Code from class
Code for HW

Pg 199:7.7.3

Dec 12

Review